Design and Analysis of Algorithms

UNIT -1
ALGORITHM

Informal Definition:

An Algorithm is any well-defined computational procedure that takes
some value or set of values as Input and produces a set of values or some value as
output. Thus algorithm is a sequence of computational steps that transforms the 1/p
into the o/p.

Formal Definition:

An Algorithm is a finite set of instructions that, if followed,
accomplishes a particular task.
All algorithms should satisfy the following criteria.

INPUT - Zero or more quantities are externally supplied.

OUTPUT -> At least one quantity is produced.

DEFINITENESS - Each instruction is clear and unambiguous.
FINITENESS - If we trace out the instructions of an algorithm, then for all
cases, the algorithm terminates after a finite number of steps.

5. EFFECTIVENESS - Every instruction must very basic so that it can be
carried out, in principle, by a person using only pencil & paper.

b

Issues or study of Algorithm:

How to device or design an algorithm = creating and algorithm.
How to express an algorithm = definiteness.

How to analysis an algorithm = time and space complexity.
How to validate an algorithm => fitness.

Testing the algorithm = checking for error.

The study of Algorithms includes many important and active areas of research.
There are four distinct areas of study one can identify
1. How to device algorithms-

Creating an algorithm is an art which many never fully automated. A major goal

is to study various design techniques that have proven to be useful. By mastering
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these design strategies, it will become easier for you to device new and useful
algorithms. some of techniques may already be familiar, and some have been found
to be useful. Dynamic programming is one technique. Some of the techniques are
especially useful in fields other than computer science such as operations research
and electrical engineering.

2. How to validate algorithms:

Once an algorithm is devised, it is necessary to show that it computes the correct
answer for all possible legal inputs. We refer to this process as algorithm
validation. The algorithm need not as yet be expressed as a program. The purpose
of validation is to assure us that this algorithm will work correctly independently.
Once the validity of the method has been shown, a program can be written and a
second phase begins. This phase is referred to as program proving or sometimes as
program verification.

A proof of correctness requires that the solution be stated in two forms. One form
is usually as a program which is annotated by a set of assertions about the input
and output variables of the program. These assertions are often expressed in the
predicate calculus. The second form is called a specification, and this may also be
expressed in the predicate calculus. A complete proof of program correctness
requires that each statement of a programming language be precisely defined and
all basic operations be proved correct.
3. How to analyze algorithms:

As an algorithm is executed, it uses the computer's central processing unit
(CPU) to perform operations and its memory to hold the program and data.
Analysis of algorithms or performance analysis refers to the task of determining
how much computing time and storage algorithms replace.we analyze the

algorithm based on time and space complexity.The amount of time neede to run the
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algorithm 1is called time complexity.The amount of memory neede to run the
algorithm is called space complexity

4. How to test a program:

Testing a program consists of two phases

1. Debugging

2. Profiling

Debugging: 1t is the process of executing programs on sample data sets to
determine whether faulty results occur and, if so to correct them. However, as E.
Dijkstra has pointed out, “debugging can only point to the presence of errors, but
not to the absence".

Profiling: Profiling or performance measurement is the process of executing a
correct program on data sets and measuring the time and space it takes to compute

the results.
Algorithm Specification:
Algorithm can be described in three ways.
1. Natural language like English:
When this way is choused care should be taken, we should ensure that
each & every statement is definite.
2. Graphic representation called flowchart:
This method will work well when the algorithm is small& simple.

3. Pseudo-code Method:

This method describe algorithms as program, which resembles
language like Pascal & algol.
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Pseudo-Code Conventions for expressing algorithms:
1. Comments begin with // and continue until the end of line.
2. Blocks are indicated with matching braces {and}.

3. An identifier begins with a letter. The data types of variables are not
explicitly declared.

4. Compound data types can be formed with records. Here is an example,
Node. Record

{
data type — 1 data-1;

data type — n data —n;
node * link;

}

Here link is a pointer to the record type node. Individual data items of
a record can be accessed with 2 and period.

5. Assignment of values to variables is done using the assignment statement.
<Variable>:= <expression>;

6. There are two Boolean values TRUE and FALSE.

- Logical Operators ~ AND, OR, NOT
—>Relational Operators <, <=>>=, =, |=

7. The following looping statements are employed.

For, while and repeat-until
While Loop:
While < condition > do

{

<statement-1>
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<statement-n>

}

For Loop:
For variable: = value-1 to value-2 step step do

{

<statement-1>

<statement-n>

}

repeat-until:

repeat
<statement-1>

<statement-n>
until<condition>

8. A conditional statement has the following forms.
- If <condition> then <statement>
- If <condition> then <statement-1>
Else <statement-1>
Case statement:
Case

{

: <condition-1> : <statement-1>

: <condition-n> : <statement-n>
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: else : <statement-n+1>

}
9. Input and output are done using the instructions read & write.

10.There is only one type of procedure:
Algorithm, the heading takes the form,

Algorithm Name (Parameter lists)
Examples:
—> algorithm for find max of two numbers

algorithm Max(A,n)
/l A'is an array of size n
{
Result :=A[1];
for I:= 2 ton do
if A[I] > Result then
Result :=A[I];
return Result;

}
=>» Algorithm for Selection Sort:

Algorithm selection sort (a,n)
/l Sort the array a[1:n] into non-decreasing order.

{
for 1:=1 ton do
{ . .
j:=i;
for k:=1+1 to n do
if (a[k]<a[j]) then j:=k;
t:=a[1];
a[i]:=alj];
afjl:=t;
}
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Recursive Algorithms:

e A Recursive function is a function that is defined in terms of itself.

e Similarly, an algorithm is said to be recursive if the same algorithm is
invoked in the body.

e An algorithm that calls itself is Direct Recursive.

e Algorithm ‘A’ is said to be Indirect Recursive if it calls another
algorithm which in turns calls ‘A’.

e The Recursive mechanism, are externally powerful, but even more
importantly, many times they can express an otherwise complex
process very clearly. Or these reasons we introduce recursion here.

e The following 2 examples show how to develop a recursive
algorithms.

—> In the first, we consider the Towers of Hanoi problem, and in
the second, we generate all possible permutations of a list of

characters.

1. Towers of Hanoi:

Tower A Tower B Tower C

Towers of Hanoi is a problem in which there will be some disks
which of decreasing sizes and were stacked on the tower in decreasing order of
size bottom to top. Besides this there are two other towers (B and C) in which one
tower will be act as destination tower and other act as intermediate tower. In this
problem we have to move the disks from source tower to the destination tower. The
conditions included during this problem are:
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1) Only one disk should be moved at a time.
2) No larger disks should be kept on the smaller disks.

Consider an example to explain more about towers of Hanoi:

Consider there are three towers A, B, C and there will be three disks present
in tower A. Consider C as destination tower and B as intermediate tower. The
steps involved during moving the disks from A to B are

Step 1: Move the smaller disk which is present at the top of the tower
Ato C.

Step 2: Then move the next smallest disk present at the top of the tower A to
B.

Step 3: Now move the smallest disk present at tower C to tower B

Step 4: Now move the largest disk present at tower A to tower C

Step 5: Move the disk smallest disk present at the top of the tower B
to tower A.

Step 6: Move the disk present at tower B to tower C.

Step 7: Move the smallest disk present at tower A to tower C
In this way disks are moved from source tower to destination tower.

ALGORITHM FOR TOWERS OF HANOL:

Algorithm Towersothanoi (n, X ,Y, Z)
{
if (n>=1) then

{
Towersothanoi(n-1, X, Z, Y);
Write(“move top disk from tower “,X, “to top of tower”,Y);

Towersofhanoi (n-1, Z, Y, X);

}
}

TIME COMPLEXITY OF TOWERS OF HANOI:

The recursive relation is:

t(n)=1; if n=0
=2t(n-1)+2 if n>=1
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Solve the above recurrence relation then the time complexity of towers of Hanoi is
O(2”n)
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Performance Analysis:

1. Space Complexity:
The space complexity of an algorithm is the amount of memory it
needs to run to compilation.

2. Time Complexity:
The time complexity of an algorithm is the amount of computer
time it needs to run to compilation.

Space Complexity:

- The Space needed by each of these algorithms is seen to be the sum of the
following component.

1. A fixed part that is independent of the characteristics (eg:number,size)of the
inputs and outputs.

The part typically includes the instruction space (ie. Space for the code),
space for simple variable and fixed-size component variables (also called
aggregate) space for constants, and so on.

1. A variable part that consists of the space needed by component variables
whose size 1s dependent on the particular problem instance being solved, the
space needed by referenced variables (to the extent that is depends on
instance characteristics), and the recursion stack space.

e The space requirement s(p) of any algorithm p may therefore be
written as,
S(P) = c+ Sp(Instance characteristics)
Where ‘c’ is a constant.

Example 1:

Algorithm abc(a,b,c)

{

return a+b++*c+(a+b-c)/(a+b) +4.0;

}
In this algorithm sp=0;let assume each variable occupies one word.
Then the space occupied by above algorithm is >=3.

S(P)>=3

-10 -
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Example 2:

Algorithm sum(a,n)
{
s=0.0;
for I=1 ton do
s= s+a[l];
return s;

}

In the above algoritm n,s and occupies one word each and array ‘a’
occupies n number of words so S(P)>=n+3

Example 3:

ALGORITHM FOR SUM OF NUMBERS USING RECURSION:

Algorithm RSum (a, n)
{
1f(n<=0) then
return 0.0;
else
return RSum(a,n-1)+a[n];
}

The space complexity for above algorithm is:

In the above recursion algorithm the space need for the values of n, return
address and pointer to array. The above recursive algorithm depth is (n+1). To each
recursive call we require space for values of n, return address and pointer to array.
So the total space occupied by the above algorithm is S(P) >= 3(n+1)

Time Complexity:

The time T(p) taken by a program P is the sum of the compile time
and the run time(execution time)

—>The compile time does not depend on the instance characteristics. Also

we may assume that a compiled program will be run several times without
recompilation .This rum time is denoted by tp(instance characteristics).

- 11 -
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—> The number of steps any problem statemn t is assigned depends on the
kind of statement.

For example, comments - 0 steps.
Assignment statements - 1 steps.
[Which does not involve any calls to other algorithms]

Interactive statement such as for, while & repeat-until-> Control part of
the statement.

->We can determine the number of steps needed by a program to solve a
particular problem instance in Two ways.

We introduce a variable, count into the program statement to increment
count with initial value 0.Statement to increment count by the appropriate
amount are introduced into the program.

This is done so that each time a statement in the original program
1s executes count is incremented by the step count of that statement.

Examplel:

Algorithm:

Algorithm sum(a,n)

{

s=0.0;

count = count+1;
for I=1 ton do

{

count =count+1;
s=s+a[l];
count=count+1;

}
count=count+1;
count=count+1;
return s;

}

12 -
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- If the count is zero to start with, then it will be 2n+3 on termination. So
each invocation of sum execute a total of 2n+3 steps.
Example 2:

Algorithm RSum(a,n)
{

count:=count+1;// For the if conditional

if(n<=0)then

count:=count+1; //For the return

return 0.0;

else

count:=count+1; //For the addition,function invocation and return

return RSum(a,n-1)+a[n];

-13-
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Example3:

ALGORITHM FOR MATRIX ADDITION

Algorithm Add(a,b,c,m,n)
{

for i:=1 to m do
{
count:=count+1; //For 'for 1'
for j:=1 ton do
{
count:=count+1; //For 'for j'
c[i,jl=ali,jl+bli,jl;
count:=count+1; //For the assignment

}

count:=count+1; //For loop initialization and last time of 'for j'

-14 -
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}

count:=count+1; //For loop initialization and last time of 'for 1'

If the count is zero to start with, then it will be 2mn+2m+1 on termination. So

each invocation of sum execute a total of 2mn+2m+1 steps

2. The second method to determine the step count of an algorithm is to build

a table in which we list the total number of steps contributes by each statement.

—First determine the number of steps per execution (s/e) of the statement

and the

total number of times (ie., frequency) each statement is executed.

- By combining these two quantities, the total contribution of all statements,

the step count for the entire algorithm is obtained.

Example 1:

Statement S/e | Frequency | Total
1. Algorithm Sum(a,n) 0 - 0
2. 0 - 0
3. S=0.0; 1 1 1
4, for I=1 ton do 1 n+1 n+1
5. s=s+a[l]; 1 n n
6. return s; 1 1 1
7.} 0 - 0
Total 2n+3

step table for algorithm sum

Example 2:

frequency total steps
Statements s/e n=0 n>0 n=0 n>0
1 algorithm Rsum(a,n) 0 0

-15-
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0
2 {
3 if(n<=0) then 1 1 1
1 1
4 return 0.0; 1 1 1
0 0
5 elsereturn
6 Rsum(a,n-1)+a[n]; 1+x 0 0
1 1+x
7 } _ 0
_ 0
Total 2
2+X

step table for algorithm recursive sum

-16 -
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Example 3:

Statements sle frequency total steps
1 Algorithm 0_

Add(a,b,c,m,n)

2 0_

3 for 1:=1 tom do I m+1 m+1

4 for j:=1 ton do 1 m(n+1) mn+m

5 1 mn mn
c[Ljl:=a[Ljl+b[Ljl;

6 } 0_

Total 2mn+2m+1

step table for matrix addition
Example 4:
Algorithm to find nth fibnocci number
Algorithm Fibonacci(n)
//Compute the nth Fibonacci number
{
if(n<=1) then
write (n);
else
{
fnm2:=0;
fnml:=1;
for i:=2 ton do

{

fn:=fnm1+fnm?2;

GVP College of Engineering for Women -17 -
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fnm:=fnml;
fnml1:=fn;

}

write(fn);

}

-18 -
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Asymptotic Notations:

The best algorithm can be measured by the efficiency of that
algorithm.The efficiency of an algorithm is measured by computing time
complexity.The asymptotic notations are used to find the time complexity of an
algorithm.

Asymptotic notations gives fastest possible,slowest possible time and average time
of the algorithm.

The basic asymptotic notations are Big-oh(0O),0Omega(£2) and theta(®).
1:BIG-OH(O) NOTATION:

(1)It is denoted by 'O'.

(i)It is used to find the upper bound time of an algorithm , that means the
maximum time taken by the algorithm.
Definition : Let f(n),g(n) are two non-negative functions. If there exists two
positive constants ¢ ,n0 . such that ¢>0 and for all n>=n0 if f(n)<=c*g(n) then we

say that f(n)=0(g(n))

219 -
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THE GRAPH FOR BIG-0OH (O) NOTATION:

cg(n)

f(n)

n
o

f(n) =0(gn))

example : consider f(n)=2n+3 and g(n)=n"2
Sol : f(n)<=c*g(n)
let us assuming as c=1,
then f(n)<=g(n)
if n=1,
2n+3<=n"2 =2(1)+3<=1"2 =>5<=1(false)
If n=2,
2n+3<=n"2=2(2)+3<=2"2= 7<=4(false)

Figure 1

if n=3,
2n+3<=n"2=2(3)+3<=372=9<=9 (true)
if n=4,
2n+3<=n"2=>2(4)+3<=4"2=11<=6 (true)
if n=5,

2n+3<=n"2=2(5)+3<=5"2=13<=25 (true)
If n=6,2n+3<=n"2=2(6)+3<=6"2=15<=36 (true)
.n>=3, f(n)=0(n"2) 1.e, f(n)=0(g(n))

-20 -
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2:OMEGA (Q) NOTATION:

(1)It is denoted by ' Q'.
(i)It is used to find the lower bound time of an algorithm, that means the
minimum time taken by an algorithm.

Definition : Let f(n),g(n) are two non-negative functions. If there exists two
positive constants c,n0.such that ¢>0 and for all n>=n0.if f(n)>=c*g(n) then we
say that f(n)=C(g(n))

THE GRAPH FOR OMEGA NOTATION:

f(n)

cg(n)

|
|
|
I
I
|
1
|
1

n

"0 Fn) = Q(g(n))

Example : consider f(n)=2n+5, g(n)=2n
Sol : Let us assume as c=1

If n=1:2n+5>=2n => 2(1)+5>=2(1) => 7>=2 (true)

-21 -
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if n=2:2n+3>=2n=> 2(2)+5>=2(2)=> 9>=4 (true)

if n=3:2n+3>=2n=> 2(3)+5>=2(3)=> 11>=6 (true)
for all .:n>=1, f(n)=Q(n) 1.e, f(n)=Q(g(n))
3:THETA () NOTATION:

(1)It is denoted by the symbol called as ().

(i)It is used to find the time in-between lower bound time and upper bound

time of an algorithm.

Definition : Let f(n),g(n) are two non-negative functions. If there exists positive

constants cl,c2,n0.such that ¢1>0,c2>0 and for
cl*g(n)<=f(n)<=c2*g(n) then we say that f(n)=0(g(n))

c28(n)

S (n)

Cy el

H

f(n) =0©(gln))

Example : consider f(n)=2n+5, g(n)=n
Sol :c1*g(n)<=f(n)<=c2*g(n)
let us assuming as c1=3 then c1*g(n)=3n
if n=1,
3n<=2n+5=>3(1)<=2(1)+5=>3<=7 (true)
If n=2,
3n<=2n+5=>3(2)<=2(2)+5=>6<=9 (true)

22
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If n=3,
3n<=2n+5=>3(3)<=2(3)+5=>9<=11 (true)

c2=4 c2*g(n)=4n
if n=1,
2n+5<=4n=>2(1)+5<=4(1)=>7<=4
If n=2,
2n+5<=4n=>2(2)+5<=4(2)=>9<=8
If n=3,
2n+5<=4n=>2(3)+5<=4(3)=>11<=12 (true)
If n=4,
2n+5<=4n=>2(4)+5<=4(4)=>13<=16 (true)
for all ..n>=3 f(n)=O(n) f(n)=0O (g(n))

4:LITTLE-OH (0) NOTATION:

Definition : Let f(n),g(n) are two non-negative functions
if lim [f(n)/ g(n)] =0 then we say that f(n)=o(g(n))
n—»o0
example : consider f(n)=2n+3, g(n)=n"2
sol : let us
lim f(n)/g(n) =0
n->"~
lim (2n+3)/ (n"2)
n->"~
=lim n(2+(3/n)) / (n"2)
n->"
=lim  (2+(3/n)) /n
n->"~
=2/
=0
..f(n)=0(n"2).

5:LITTLE OMEGA NOTATION:

Definition: Let f(n) and g(n) are two non-negative functions.
if lim g(n)/f(n) =0 then we say that f(n)=m(g(n))
n->"
example : consider f(n)=n"2, g(n)=2n+5
sol : let us

-23
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lim g(n)/f(n) =0

(n->%)
=lim (2n+5) /(n"2)

(n->%)
=lim n(2+(5/n)) / (n"2)

(n->%)
=lim (2+(5/n)) /n =2/"=0

(n->%)
f(n)= o(n).

Amortized analysis:

Amortized analysis means finding average running time per operation over a
worst case sequence of operations.

Suppose a sequence I1,12,D1,13,14,15,16,D2,I7 of insert and delete operations
is performed on a set.

Assume that the actual cost of each of the seven inserts is one and for
delete operations D1 and D2 have an actual cost of 8 and 10 so the total
cost of sequence of operations is 25.

In amortized scheme we charge some of the actual cost of an operation to
other operations. This reduce the charge cost of some operations and
increases the cost of other operations. The amortized cost of an operation is
the total cost charge to it.

The only requirement is that the some of the amortized complexities of all
operations in any sequence of operations be greater than or equal to their
some of actual complexities i.e.,

D1zizn amortized(i) = X, o, actual(i) — (1)

Where amortized( i ) and actual( i ) denote the amortized and actual
complexities of the i™ operations in a sequence on n operations.

To define the potential function p(i) as:

_ 24 -
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p(1)=amortized( i )-actual(1)+p(i-1) —> (2)

If we sum equation (2) for 1<i<n we get

Zli’:’ﬂ]: 'pl,(f): Zlﬂ:’ﬂ]:(a'morﬁIZEdﬁ) _ HCTM&E(E':' + p(E _ 1))
Z p(i) — Z pli—1)= Z (amortized(i) — actual(i))
1=i=Zn 1 1=ZiZn

1=

14
17

P (n)-p (0) = 21 «i=n (amortized(i) — actual(i))

From equation (1) we say that

Pm-p0)20 — 3)

Under assumption p(0)=0,p(i) is the amount by which the first ‘i’ operations
have been over charged (i.e., they have been charged more than the actual
cost).

The methods to find amortized cost for operations are:

1. Aggregate method.

2. Accounting method.

3. Potential method.

1. Aggregate method:

The amortized cost of each operation is set equal to Upper Bound On Sum
Of Actual Costs(n)/n.

2. Accounting method:
In this method we assign amortized cost to the operations (possibly by
guessing what assignment will work),compute the p(i) using equation(2) and
show that p(n)-p(0)>=0.
3.Potential method:

Here we start with potential function that satisfies equation(3) and
compute amortized complexities using equation(2).

_ 25 -
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Example:

Let assume we pay $50 for each month other than March, June, September,
and December $100 for every June, September. calculate cost by using
aggregate, accounting and potential method .

Month 1 (2 |3 4 |5 |6 7 |8 9 10 11 (12 (13 (14 |15 16
Actual 50 |50 {100 |50 [50 [100 |50 [50 100 |50 50 [200]50 50 100 |50
cost:
Amortize |75 |75 |75 75 |75 |75 75 |75 75 75 75 |75 |75 |75 |75 75
d cost:
P(): 25 |50 |25 50 |75 |50 75 1100 |75 100 (125 (0 25 |50 | 25 50

Aggregate Method:

=200 x Ln/124 + 100( Ln/34 - Lo/124d) + 50(n- Ln/3d)

=100 x Ln/124 +50 Ln/34 +50n

<100 x (n/12) + 50 x (n/3) + 50xn

=50n ((1/6) + (1/3) + (1))

=50 n ((1+2+6)/6)

=50 n (9/6)

=75n.

In the above problem the actual cost for ‘n’ months does not exceed 200n
from the aggregate method the amortized cost for ‘n’ months does not
exceed $75. The amortized cost for each month is set to $75.

Let assume p(0)=0 the potential for each and every month.

Accounting method:
From the above table we see that using any cost less than $75 will result
in p(n)-p(0)<0.
The amortized cost must be >75.
If the amortized cost <75 then only the condition p(n)-p(0)<=0.
Potential method:
To the given problem we start with the potential function as:
P (n) =0 n mod 12=0
P (n) =25 n mod 12=1 or 3

- 26 -
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P (n) =50 n mod 12=4, 6, 2
P (n) =75 n mod 12=5,7,9
P (n) =100 n mod 12=8, 10
P (n) =125 n mod 12=4
From the above potential function the amortized cost for operation is
evaluated for amortized( 1 )=p(1)-p(1-1 )+actual(1).

Probabilistic analysis:

In probabilistic analysis we analyze the algorithm for finding efficiency
of the algorithm.The efficiency of algorithm is also depend upon distribution of
inputs.In this we analyze algorithm by the concept of probability.

For example the company wants to recruiting k persons from the n
persons.To do this the company assigns ranking to all n persons depend upon their
performance.The rankings of n persons from r; to r,.To n persons we get n!
permutations out of n! permutations the company selects any one combination that

is from r; to ry

_27 -


http://www.tcpdf.org

Design and Analysis of Algorithms

UNIT-II

Divide and Conquer

General Method

Divide and conquer is a design strategy which is well known to breaking down
efficiency barriers. When the method applies, it often leads to a large improvement in
time complexity. For example, from O (n?) to O (n log n) to sort theelements.

Divide and conquer strategy is as follows: divide the problem instance into two or
more smaller instances of the same problem, solve the smaller instances recursively,
and assemble the solutions to form a solution of the original instance. The recursion
stops when an instance is reached which is too small to divide. When dividing the
instance, one can either use whatever division comes most easily to hand or invest
time in making the division carefully so that the assembly is simplified.

Divide and conquer algorithm consists of two parts:

Divide : Divide the problem into a number of sub problems. The sub problems
are solved recursively.
Conquer : The solution to the original problem is then formed from the solutions

to the sub problems (patching together the answers).

Traditionally, routines in which the text contains at least two recursive calls are called
divide and conquer algorithms, while routines whose text contains only one recursive
call are not. Divide—and-conquer is a very powerful use of recursion.

Control Abstraction of Divide and Conquer

A control abstraction is a procedure whose flow of control is clear but whose primary
operations are specified by other procedures whose precise meanings are left
undefined. The control abstraction for divide and conquer technique is DANDC(P),
where P is the problem to be solved.

DANDC (P)
{
if SMALL (P) then return S (p);
else
{
divide p into smaller instances pi, p2, .... Pk, k>1;
apply DANDC to each of these sub problems;
return (COMBINE (DANDC (p;) , DANDC (p2),...., DANDC (p«));
b

by

SMALL (P) is a Boolean valued function which determines whether the input size is
small enough so that the answer can be computed without splitting. If this is so
function 'S’ is invoked otherwise, the problem ‘p’ into smaller sub problems. These
sub problems pi, p2, . . ., P« are solved by recursive application of DANDC.
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If the sizes of the two sub problems are approximately equal then the computing
time of DANDC is:

_ g (n) n small
T M= 0o1m/2: () otherwise

Where, T (n) is the time for DANDC on ‘n’ inputs
g (n) is the time to complete the answer directly for small inputs and
f (n) is the time for Divide and Combine

Binary Search

If we have 'n’ records which have been ordered by keys so that x; < x; < ... < Xn,
When we are given a element 'Xx’, binary search is used to find the corresponding
element from the list. In case ‘x’ is present, we have to determine a value ‘j’ such
that a[j] = x (successful search). If 'x’ is not in the list then j is to set to zero (un
successful search).

In Binary search we jump into the middle of the file, where we find key a[mid], and
compare ‘x’ with a[mid]. If x = a[mid] then the desired record has been found.
If x < a[mid] then *x’” must be in that portion of the file that precedes a[mid], if there
at all. Similarly, if a[mid] > x, then further search is only necessary in that past of
the file which follows a[mid]. If we use recursive procedure of finding the middle key
a[mid] of the un-searched portion of a file, then every un-successful comparison of
‘X" with a[mid] will eliminate roughly half the un-searched portion from consideration.

Since the array size is roughly halved often each comparison between 'x’ and
a[mid], and since an array of length 'n’ can be halved only about logzn times before
reaching a trivial length, the worst case complexity of Binary search is aboutlog,n

Algorithm Algorithm

BINSRCH (a, n, x)

// array a(1 : n) of elements in increasing order, n >0,

// determine whether *x’ is present, and if so, set j such that x = a(j)
// else return j

{
low :=1; high :=n;
while (low < high) do
{
mid :=|(low + high)/2|
if (x < a [mid]) then high:=mid - 1;
else if (x > a [mid]) then low:= mid + 1
else return mid;
b
return O;
b

low and high are integer variables such that each time through the loop either 'x’ is
found or low is increased by at least one or high is decreased by at least one. Thus
we have two sequences of integers approaching each other and eventually /fow will
become greater than high causing termination in a finite number of steps if 'x’ is not
present.
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Example for Binary Search

Let us illustrate binary search on the following 9 elements:

Index 1 2 3 4 5 6 7 8 9
Elements | -15 | -6 0 7 9 23 | 54 | 82 | 101

The number of comparisons required for searching different elements is asfollows:

1. Searching for x = 101 low high mid
1 9 5
6 9 7
8 9 8
9 9 9
found

Number of comparisons = 4

2. Searching for x = 82 low high mid
1 9 5
6 9 7
8 9 8
found
Number of comparisons = 3
3. Searching for x = 42 low high mid
1 9 5
6 9 7
6 6 6
7 6 not found
Number of comparisons = 4
4. Searching for x = -14 low high mid
1 9 5
1 4 2
1 1 1
2 1 not found

Number of comparisons = 3

Continuing in this manner the number of element comparisons needed to find each of
nine elements is:

Index 1 2 3 4 5 6 7 8 9
Elements -15| -6 0 7 9 23 | 54 | 82 | 101
Comparisons | 3 2 3 4 1 3 2 3 4

No element requires more than 4 comparisons to be found. Summing the
comparisons needed to find all nine items and dividing by 9, yielding 25/9 or
approximately 2.77 comparisons per successful search on the average.

There are ten possible ways that an un-successful search may terminate depending
upon the value of x.
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If x < a[l], a[1] < x < a[2], a[2] < x < a[3], a[5] < x < a[6], a[6] < x < a[7] or
a[7] < x < a[8] the algorithm requires 3 element comparisons to determine that *x’
is not present. For all of the remaining possibilities BINSRCH requires 4 element
comparisons. Thus the average number of element comparisons for an unsuccessful
search is:

(3+3+3+4+4+3+3+3+4+4)/10=34/10=3.4

The time complexity for a successful search is O(log n) and for an unsuccessful
search is O(log n).

Successful searches un-successful searches
0(1), O(log n), ©O(log n) O(log n)
Best average worst best, average and worst

Analysis for worst case
Let T (n) be the time complexity of Binary search

The algorithm sets mid to [n+1 / 2]

Therefore,
T(0) =0
T(n) =1 if x = a [mid]
= 1+T([(n+1)/2]-1) if x < a [mid]
= 1+T(n-[(n+1)/2]) if x > a [mid]

Let us restrict 'n’ to values of the form n = 2% - 1, where 'k’ is a non-negative
integer. The array always breaks symmetrically into two equal pieces plus middle
element.

k-1 -1 k-1 -1

[n+1]

Algebraically this is = [2K —1+ 1l = K- for K > 1

| Ol
L 2 1 L 2 1

Giving,
T(0) = 0
T2% - 1) = 1 if x = a [mid]
= 1+TR% 1 -1) if X < a [mid]
= 1+TR2% 1 -1) if x > a [mid]

In the worst case the test x = a[mid] always fails, so
w(0) =0
wkK-1)=14+wR2 1-1)
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This is now solved by repeated substitution:

w2k - 1) 1+ w(2¥ 1-1)
= 1+ [1+ w(22-1)]

= 1+ [1+[1+wR3-1]]

Fori < k, letting i = k gives w(2X -1) = K + w(0) = k
But as 2 -1 = n, so K = log,(n + 1), so

w(n) = log,(n + 1) = O(log n)
for n = 2%-1, concludes this analysis of binary search.

Although it might seem that the restriction of values of 'n’ of the form 2X-1 weakens
the result. In practice this does not matter very much, w(n) is a monotonic
increasing function of ‘n’, and hence the formula given is a good approximation even
when 'n’ is not of the form 2K-1.

External and Internal path length:

The lines connecting nodes to their non-empty sub trees are called edges. A non-
empty binary tree with n nodes has n—-1 edges. The size of the tree is the number of
nodes it contains.

When drawing binary trees, it is often convenient to represent the empty sub trees
explicitly, so that they can be seen. For example:

® ®b
|
The tree given above in which the empty sub trees appear as square nodes is as

follows:
O Ob
Eato s
[] \Q
[] h
The square nodes are called as external nodes E(T). The square node version is

sometimes called an extended binary tree. The round nodes are called internal nodes
I(T). A binary tree with n internal nodes has n+1 external nodes.

The height h(x) of node 'x’ is the number of edges on the longest path leading down
from X’ in the extended tree. For example, the following tree has heights written
inside its nodes:
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© ®©
\ \
o I3 @ 9
[o] E
The depth d(x) of node 'x’ is the number of edges on path from the root to 'x’. It is

the number of internal nodes on this path, excluding ‘x’ itself. For example, the
following tree has depths written inside its nodes:

c
REWcY

\
The internal path length I(T) is the sum of the depths of the internal nodes of ‘T":
(M = ), dx)

x el(T)

The external path length E(T) is the sum of the depths of the externalnodes:

ET) = D, dx)

x e E(T)
For example, the tree above has I(T) = 4 and E(T) = 12.
A binary tree T with 'n’ internal nodes, will have I(T) + 2n = E(T) external nodes.

A binary tree corresponding to binary search when n = 16 is

\ 1
aly

p O,
R

0 1 2 3 4 5 6 7 8 9 10 3 14

O Represents internal nodes which lead for successful search

External square nodes, which lead for unsuccessful search.

Let Cy be the average number of comparisons in a successful search.

C 'y be the average number of comparison in an un successful search.
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Then we have,

N internal pathlengthoftree
N

Cn=1

Clh = External path length of tree
N N+ 1

CN=(1 L)C'N—l
L NJ

External path length is always 2N more than the internal path length.

Merge Sort

Merge sort algorithm is a classic example of divide and conquer. To sort an array,
recursively, sort its left and right halves separately and then merge them. The time
complexity of merge mort in the best case, worst case and average case is O(n log n)
and the number of comparisons used is nearly optimal.

This strategy is so simple, and so efficient but the problem here is that there seems
to be no easy way to merge two adjacent sorted arrays together in place (The result
must be build up in a separate array).

The fundamental operation in this algorithm is merging two sorted lists. Because the
lists are sorted, this can be done in one pass through the input, if the output is put in
a third list.

The basic merging algorithm takes two input arrays ‘a’ and 'b’, an output array ‘c’,
and three counters, a ptr, b ptr and c ptr, which are initially set to the beginning of
their respective arrays. The smaller of afa ptr] and b[b ptr] is copied to the next
entry in ‘c’, and the appropriate counters are advanced. When either input list is
exhausted, the remainder of the other list is copied to'c’.

To illustrate how merge process works. For example, let us consider the array ‘a’
containing 1, 13, 24, 26 and ‘b’ containing 2, 15, 27, 38. First a comparison is done
between 1 and 2. 1 is copied to ‘c’. Increment a ptr and c ptr.

o
(R ENIIE
)
o
-~
)

k]
b ol I (S
g

and then 2 and 13 are compared. 2 is added to ‘c’. Increment b ptr and c ptr.

112 | 3| 4 5|16 7] 8 1 2 | 3|4 |5|6|7|8
1|13 (2426 2 | 15| 27| 28 1 2

h j i

ptr ptr ptr
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then 13 and 15 are compared. 13 is added to ‘c’. Increment a ptr and c ptr.

1| 2 3| 4 5 6 7 | 8 1 21 34|56 )| 7|8
1|13 |24 | 26 2 | 15127 |28 1 2 |13

h j i

ptr ptr ptr

24 and 15 are compared. 15 is added to ‘c’. Increment b ptr and c ptr.

1| 2 3 4 5 6 7 | 8 112 3 4 | 56|78
1|13 | 24| 26 2 | 15| 27| 28 1 ]2 (13| 15

h J i

ptr ptr ptr

24 and 27 are compared. 24 is added to ‘c’. Increment a ptr and cptr.

1| 2 3| 4 5| 6 7 | 8 1 12)| 3| 4 5|6| 7|8
1113 | 24| 26 2 | 15|27 | 28 1 12 (13|15 24

h J i

ptr ptr ptr

26 and 27 are compared. 26 is added to ‘c’. Increment a ptr and cptr.

1] 2 3 4 5 6 7 | 8 1|2| 3 4 5|16 |78
1113 |24 | 26 2 | 15| 27|28 1 |2]13|15|24| 26

h J i

ptr ptr ptr

As one of the lists is exhausted. The remainder of the b array is then copied to ‘c’.

1| 2 3| 4 5|6 7 | 8 12|34 |5|6| 7|38
1|13 |24 26 2 | 15| 27| 28 1 12|13 |15|24|26| 27|28
h J i
ptr ptr ptr

Algorithm

Algorithm MERGESORT (low, high)
// a (low : high) is a global array to be sorted.

{

if (low < high)

{
mid := | (low + high)/2| //finds where to split the set
MERGESORT(low, mid) //sort one subset
MERGESORT(mid+1, high) //sort the other subset
MERGE(low, mid, high) // combine the results

b
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Algorithm MERGE (low, mid, high)

// a (low : high) is a global array containing two sorted subsets
// in a (low : mid) and in a (mid + 1 : high).

// The objective is to merge these sorted sets into single sorted
// set residing in a (low : high). An auxiliary array B is used.

{
h :=low; i :=low; j:= mid + 1;
while ((h < mid) and (J < high)) do
{
if (a[h] < a[j]) then
{
b[i] :=a[h]; h:=h + 1;
b
else
{
bli] :=aljl; j:=i+1;
=i+ 1;
b
if (h > mid) then
for k := j to high do
{
b[i] :=a[k]; i:=i+ 1;
b
else
for k := h to mid do
{
b[i] :=a[K];i:=i+1;
b
for k := low to high do
alk] := b[k];
b
Example

For example let us select the following 8 entries 7, 2, 9, 4, 3, 8, 6, 1 to illustrate
merge sort algorithm:

7,2,9,413,8,6,1-51,2,3,4,6,7,8 9

7,219,4-52,4,7,9 3,816,1-51,3,6,8

7122, 7 914549 31838 6|l]1->1,6

7 -7 2 52 959 4 >4 353 8 »>8 6 >6 151
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Tree Calls of MERGESORT(1, 8)

The following figure represents the sequence of recursive calls that are produced by
MERGESORT when it is applied to 8 elements. The values in each node are the values
of the parameters low and high.

1,8

1,2 3, 4 56 7,8

Tree Calls of MERGE()

The tree representation of the calls to procedure MERGE by MERGESORT is as
follows:

1,2, 4 5,68

1,4,8

Analysis of Merge Sort

We will assume that ‘n’ is a power of 2, so that we always split into even halves, so
we solve for the case n = 2K,

For n = 1, the time to merge sort is constant, which we will be denote by 1.
Otherwise, the time to merge sort ‘n’ numbers is equal to the time to do two
recursive merge sorts of size n/2, plus the time to merge, which is linear. The
equation says this exactly:

T(1) =1
T(n) =2T(n/2) + n

This is a standard recurrence relation, which can be solved several ways. We will
solve by substituting recurrence relation continually on the right-handside.

We have, T(n) = 2T(n/2) + n
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Since we can substitute n/2 into this main equation

2T(n/2) = 2 (2 (T(n/4)) + n/2)
= 4 T(n/4) + n
We have,
T(n/2) = 2T(n/4) + n
T(n) = 4 T(n/4) + 2n

Again, by substituting n/4 into the main equation, we see that

4T (n/4) = 4 (2T(n/8)) + n/4
= 8 T(n/8) + n
So we have,
T(n/4) = 2T(n/8) + n
T(n) = 8 T(n/8) + 3n

Continuing in this manner, we obtain:
T(n) = 2XT(n/2%) + K. n
As n = 2%, K = log,n, substituting this in the above equation
T (n) = 29" T(JZ_kL\ log,n . n
2 )

nT(1l) +nlogn
nlogn+n

Representing this in O notation:
T(n) = O(n log n)

We have assumed that n = 2. The analysis can be refined to handle cases when 'n’
is not a power of 2. The answer turns out to be almostidentical.

Although merge sort’s running time is O(n log n), it is hardly ever used for main
memory sorts. The main problem is that merging two sorted lists requires linear
extra memory and the additional work spent copying to the temporary array and
back, throughout the algorithm, has the effect of slowing down the sort considerably.
The Best and worst case time complexity of Merge sort is O(n logn).

Strassen’s Matrix Multiplication:

The matrix multiplication of algorithm due to Strassens is the most dramatic example
of divide and conquer technique (1969).

The usual way to multiply two n x n matrices A and B, yielding result matrix ‘C" as
follows :

fori:=1tondo
forj:=1tondo
cli, j1 :=0;

for Ki = 1tondo
cli, j1 := cfi, 31 + afli, k] * b[k, j];
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This algorithm requires n® scalar multiplication’s (i.e. multiplication ofsingle
numbers) and n® scalar additions. So we naturally cannot improve upon.

We apply divide and conquer to this problem. For example let us considers three
multiplication like this:

(A 11 A\ (By 812\| _ (C 1 CIZT
| A A | I B C C
L 2t 2) U 2 22) L 2 22)

Then ¢; can be found by the usual matrix multiplication algorithm,

Ci1 = A1 . B+ A B
Ci2 = A11 . Bio+ A1x B2
Co1 = Az . Bii + A Ban
Co2= A1 . Bio+ A By

This leads to a divide-and-conquer algorithm, which performs nxn matrix
multiplication by partitioning the matrices into quarters and performing eight
(n/2)x(n/2) matrix multiplications and four (n/2)x(n/2) matrix additions.

T(1)
T(n)

1
8 T(n/2)

Which leads to T (n) = O (n?), where n is the power of 2.

Strassens insight was to find an alternative method for calculating the Cj;, requiring
seven (n/2) x (n/2) matrix multiplications and eighteen (n/2) x (n/2) matrix
additions and subtractions:

= (A1 + Ap) (B11 + By)

(A21 + Ax) Byy

A1 (Biz — By)
= Ay (Bzi - Bi1)

T = (A11 + A1) Bn

p
Q
R
S

U = (A1 = A1) (Bir + Byo)
V = (A2 - Ap) (B2 + Bi)
Ci1i=P+S-T+V
Ci2=R+T
Cx=Q+S
Cp=P+R-Q+U.
This method is used recursively to perform the seven (n/2) x (n/2) matrix

multiplications, then the recurrence equation for the number of scalar multiplications
performed is:
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T(1)
T(n)

1
7 T(n/2)

Solving this for the case of n = 2¥is easy:

T(25) 7 T(2¥1)

72 T(2%?)

Il
N
—

=
N

o
~

Puti =k

Thatis, T(n) = 7 log,n

— n Iogz7

— O(n |0927) — O(Zn.Sl)

So, concluding that Strassen’s algorithm is asymptotically more efficient than the
standard algorithm. In practice, the overhead of managing the many small matrices
does not pay off until ‘n’ revolves the hundreds.

Quick Sort

The main reason for the slowness of Algorithms like SIS is that all comparisons and
exchanges between keys in a sequence wj;, Wy, . . . . , W, take place between
adjacent pairs. In this way it takes a relatively long time for a key that is badly out of
place to work its way into its proper position in the sorted sequence.

Hoare his devised a very efficient way of implementing this idea in the early 1960’s
that improves the O(n?) behavior of SIS algorithm with an expected performance that
is O(n log n).

In essence, the quick sort algorithm partitions the original array by rearranging it
into two groups. The first group contains those elements less than some arbitrary
chosen value taken from the set, and the second group contains those elements
greater than or equal to the chosen value.

The chosen value is known as the pivot element. Once the array has been rearranged
in this way with respect to the pivot, the very same partitioning is recursively applied
to each of the two subsets. When all the subsets have been partitioned and
rearranged, the original array is sorted.

The function partition() makes use of two pointers ‘i’ and ‘j’ which are moved toward
each other in the following fashion:

e Repeatedly increase the pointer ‘i’ until a[i] >= pivot.

e Repeatedly decrease the pointer ‘j’ until a[j] <= pivot.
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e Ifj > i, interchange a[j] with al[i]

e Repeat the steps 1, 2 and 3 till the ‘i’ pointer crosses the ‘j’ pointer. If 'i’
pointer crosses ‘j’ pointer, the position for pivot is found and place pivot
element in ‘j’ pointer position.

The program uses a recursive function quicksort(). The algorithm of quick sort
function sorts all elements in an array ‘a’ between positions ‘low’ and *high’.

e It terminates when the condition low >= high is satisfied. This condition
will be satisfied only when the array is completely sorted.

e Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it
calls the partition function to find the proper position j of the element
x[low] i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], . . ..

.. X[3-1] and x[j+11, x[j+2], . . .x[high].

o It calls itself recursively to sort the left sub-array x[low], x[low+1], . .. ..
.. X[j-1] between positions low and j-1 (where j is returned by the
partition function).

e It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . .. ..
. . x[high] between positions j+1 and high.

Algorithm Algorithm

QUICKSORT(low, high)
/* sorts the elements a(low), . . ... , a(high) which reside in the global array A(1:
n) into ascending order a (n + 1) is considered to be defined and must be greater
than all elementsin a(l1 : n); A(n + 1) = + o« */

{
if low < high then
{
j := PARTITION(a, low, high+1);
// 1 is the position of the partitioning element
QUICKSORT(low, j = 1);
QUICKSORT(j + 1, high);
b
b
Algorithm PARTITION(a, m, p)
{
V&alm), i€ m;j € p; // A (m) is the partition element
do
{
loop i :=i + 1 until a(i) > v // i moves left to right
loop j :=j -1 until a(j) < v // p moves right to left
if (i <j) then INTERCHANGE(a, i, j)
> while (i > j);
a[m] :=a[j]; a[j] :=V; // the partition element belongs at position P
return j;



Algorithm INTERCHANGE(a, i, j)

{
P:=a[i];
ali] := a[il;
aljl := p;
b
Example
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Select first element as the pivot element. Move ‘i’ pointer from left to right in search
of an element larger than pivot. Move the ‘j’ pointer from right to left in search of an
element smaller than pivot. If such elements are found, the elements are swapped.
This process continues till the ‘i’ pointer crosses the ‘j’ pointer. If ‘i’ pointer crosses ‘j’

s/

pointer, the position for pivot is found and interchange pivot and element at ‘j
position.
Let us consider the following example with 13 elements to analyze quick sort:
1 2 3 4 5 6 7 8 9 10 11 12 13 | Remarks
38 08 16 06 79 57 24 56 02 58 04 70 45
pivot i j swapi &j
04 79
i j swapi &j
02 57
j i
(24 | 08 | 16 | 06 | 04 | 02) | 38 | (56 | 57 | 58 | 79 | 70 | 45) swag?""’t
. . swap pivot
pivot J, i &
(02 | 08 | 16 | 06 | 04) | 24
pivot, i swap pivot
j & j
02 | (08 | 16 | 06 | 04)
pivot i j swap i &j
04 16
j i
(06 | 04) | 08 | (16) swag?“’“
pivot, i
j
swap pivot
(04) | 06 8]
04
pivot,
i i
16
pivot,
i i
(02| 04 | 06 | 08 | 16 | 24) | 38
(56 | 57 | 58 | 79 | 70 | 45)
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pivot i j swap i &j
45 57
j i
45)| 56 | (58 | 79 | 70 | 57) S""ag?“"’t
45 swap pivot
ivot, .
e &J
58 | 79 57 o
p(ivot i 70 j) swap i &]j
57 79
j i
(57) | 58 | (70 | 79) Swag‘j"‘mt
57
pivot,
i, i
(70 | 79)
pivot, i swap pivot
j &j
70
79
pivot,
i, i
(45 | 56 57 58 70 | 79)
02 04 06 08 16 24 38 45 56 57 58 70 79

Analysis of Quick Sort:
Like merge sort, quick sort is recursive, and hence its analysis requires solving a
recurrence formula. We will do the analysis for a quick sort, assuming a random pivot
(and no cut off for small files).
We will take T (0) =T (1) = 1, as in merge sort.
The running time of quick sort is equal to the running time of the two recursive calls
plus the linear time spent in the partition (The pivot selection takes only constant
time). This gives the basic quick sort relation:

T(M)=T@+T(h-i-1)+ Cn - (1)

Where, i = |S,]| is the number of elements in S;.

Worst Case Analysis

The pivot is the smallest element, all the time. Then i=0 and if we ignore T(0)=1,
which is insignificant, the recurrence is:

T(N)=T(nh-1)+ Cn n>1 - (2)

Using equation - (1) repeatedly, thus
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T(h-1)=T(Mn-2)+C(n-1)

T(h-2)=T(n-3)+C(nh-2)

T (2) =T@Q)+C(2)

Adding up all these equations yields

n

T(n=T(1)+ Z; i

= 0 (n? - (3)

Best Case Analysis
In the best case, the pivot is in the middle. To simply the math, we assume that the
two sub-files are each exactly half the size of the original and although this gives a
slight over estimate, this is acceptable because we are only interested in a Big - oh
answer.
T(n) = 2T(/2)+ Cn - (4)

Divide both sides by n

T(n) _ T/2), ] (5)
n n/2

Substitute n/2 for 'n’ in equation (5)

T(n/2) _ T(n/4) . ] (6)
n/?2 n/4

Substitute n/4 for 'n’ in equation (6)

n/4) _ Tn/8), i )
n/a n/8

Continuing in this manner, we obtain:

T(2

H2 o, ¢ - (8)

2 h 1

We add all the equations from 4 to 8 and note that there are log n of them:

n 1
Which yields, T(n) =Cnlogn+ n = 0(n log n) - (10)

This is exactly the same analysis as merge sort, hence we get the sameanswer.

69
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Average Case Analysis

The number of comparisons for first call on partition: Assume left_to_right moves
over k smaller element and thus k comparisons. So when right_to_left crosses
left_to_right it has made n-k+1 comparisons. So, first call on partition makes n+1
comparisons. The average case complexity of quicksort is

T(n) = comparisons for first call on quicksort

+

{Z 1<=nleft,nright<=n [T(nleft) + T(nright)]}n = (n+1) + 2 [T(0) +T(1) + T(2) +
----- + T(n-1)]/n

nT(n) = n(n+1) + 2 [T(0) +T(1) + T(2) + ----- + T(n-2) +T(n-1)]

(n-1)T(n-1) = (n-1)n + 2 [T(0) +T(1) + T(2) + ----- + T(n-2)1\

Subtracting both sides:

nT(n) -(n-1)T(n-1) = [ n(n+1) - (n-1)n] + 2T(n-1) = 2n + 2T(n-1)
nT(n) = 2n + (n-1)T(n-1) + 2T(n-1) = 2n + (n+1)T(n-1)

T(n) =2+ (n+1)T(n-1)/n

The recurrence relation obtained is:

T(n)/(n+1) = 2/(n+1) + T(n-1)/n

Using the method of subsititution:

T(n)/(n+1) 2/(n+1) + T(n-1)/n
T(n-1)/n 2/n + T(n-2)/(n-1)
T(n-2)/(n-1) = 2/(n-1) + T(n-3)/(n-2)
T(n-3)/(n-2) 2/(n-2) + T(n-4)/(n-3)

'.I'(3)/4 .2/4 + T(2)/3

T(2)/3 = 2/3 + T(1)/2 T(1)/2 = 2/2 + T(0)
Adding both sides:
T(n)/(n+1) + [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2]
= [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] + T(0) +
[2/(n+1) + 2/n + 2/(n-1) + ---------- +2/4 + 2/3]
Cancelling the common terms:
T(n)/(n+1) = 2[1/2 +1/3 +1/4+-------------- +1/n+1/(n+1)]
T() = (4020 Dy VK

=2(n+1) [ -]

=2(n+1)[log (n+1) - log 2]

=2n log (n+1) + log (n+1)-2n log 2 -log 2
T(n)= O(n log n)

3.8. Straight insertion sort:

Straight insertion sort is used to create a sorted list (initially list is empty) and at
each iteration the top humber on the sorted list is removed and put into its proper



Design and Analysis of Algorithms

place in the sorted list. This is done by moving along the sorted list, from the
smallest to the largest number, until the correct place for the new number is located
i.e. until all sorted numbers with smaller values comes before it and all those with
larger values comes after it. For example, let us consider the following 8 elements for
sorting:

Index 1 2 3 4 5 6 7 8
Elements | 27 | 412 | 71 | 81 | 59 | 14 | 273 | 87

Solution:

Iteration 0: unsorted 412 71 81 59 14 273 87

Sorted 27
Iteration 1: unsorted 412 71 81 59 14 273 87
Sorted 27 412
Iteration 2: unsorted 71 81 59 14 273 87
Sorted 27 71 412
Iteration 3: unsorted 81 39 14 273 87
Sorted 27 71 81 412
Iteration 4: unsorted 59 14 273 87
Sorted 274 59 71 81 412
Iteration 5: unsorted 14 273 87
Sorted 14 27 59 71 81 412
Iteration 6: unsorted 273 87
Sorted 14 27 59 71 81 273 412
Iteration 7: unsorted 87

Sorted 14 27 59 71 81 87 273 412
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UNIT
3

Greedy Method
GENERAL METHOD

Greedy is the most straight forward design technique. Most of the problems have n
inputs and require us to obtain a subset that satisfies some constraints. Any subset
that satisfies these constraints is called a feasible solution. We need to find a feasible
solution that either maximizes or minimizes the objective function. A feasible solution
that does this is called an optimal solution.

The greedy method is a simple strategy of progressively building up a solution, one
element at a time, by choosing the best possible element at each stage. At each stage,
a decision is made regarding whether or not a particular input is in an optimal solution.
This is done by considering the inputs in an order determined by some selection
procedure. If the inclusion of the next input, into the partially constructed optimal
solution will result in an infeasible solution then this input is not added to the partial
solution. The selection procedure itself is based on some optimization measure. Several
optimization measures are plausible for a given problem. Most of them, however, will
result in algorithms that generate sub-optimal solutions. This version of greedy
technique is called subset paradigm. Some problems like Knapsack, Job sequencing
with deadlines and minimum cost spanning trees are based on subset paradigm.

For the problems that make decisions by considering the inputs in some order, each
decision is made using an optimization criterion that can be computed using decisions
already made. This version of greedy method is ordering paradigm. Some problems like
optimal storage on tapes, optimal merge patterns and single source shortest path are
based on ordering paradigm.

CONTROL ABSTRACTION

Algorithm Greedy (a, n)
// a(1 : n) contains the ‘n’ inputs

solution := ; // initialize the solution to empty
fori:=1tondo
{

x := select (a);
if feasible (solution, x) then
solution := Union (Solution, x);
b

return solution;

b

Procedure Greedy describes the essential way that a greedy based algorithm will look,
once a particular problem is chosen and the functions select, feasible and union are
properly implemented.

The function select selects an input from ‘a’, removes it and assigns its value to 'x'.
Feasible is a Boolean valued function, which determines if ‘x’ can be included into the
solution vector. The function Union combines *x’ with solution and updates the objective
function.
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KNAPSACK PROBLEM

Let us apply the greedy method to solve the knapsack problem. We are given ‘n’
objects and a knapsack. The object ‘i’ has a weight w; and the knapsack has a capacity
‘m’. If a fraction x;, 0 < x; < 1 of object i is placed into the knapsack then a profit of p;
xiis earned. The objective is to fill the knapsack that maximizes the total profit earned.

Since the knapsack capacity is ‘m’, we require the total weight of all chosen objects to

be at most ‘m’. The problem is stated as:
n

maximize p; X;
i1
n

subjectto a; x; M where, 0 <xi<landl<i<n
il

The profits and weights are positive numbers.

Algorithm

If the objects are already been sorted into non-increasing order of p[i] / w[i] then the
algorithm given below obtains solutions corresponding to this strategy.

Algorithm GreedyKnapsack (m, n)

// P[1 : n] and w[1 : n] contain the profits and weights respectively of

// Objects ordered so that p[i] / w[il> p[i + 1] / w[i + 1].

// mis the knapsack size and x[1: n] is the solution vector.

{
fori:=1tondox[i] :=0.0 // initialize x
U:=m;
fori:=1tondo
{
if (w(i) > U) then break;
x [i]:=1.0; U:=U-wl[i];
b
if (i <n)then x[i] := U/ wJi];
b

Running time:

The objects are to be sorted into non-decreasing order of pi/ wjratio. But if we

disregard the time to initially sort the objects, the algorithm requires only O(n) time.
Example:

Consider the following instance of the knapsack problem: n = 3, m = 20, (p1, p2, p3) =
(25, 24, 15) and (w1, w2, w3) = (18, 15, 10).
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1. First, we try to fill the knapsack by selecting the objects in some order:

X1 X2 X3 Wi Xj Pi Xi
1/211/3 | 1/4 | 18x1/2+15x1/3 +10x1/4 | 25x1/2 +24x1/3 +15x1/4 =
= 16.5 24.25

2. Select the object with the maximum profit first (p = 25). So, x1 = 1 and profit
earned is 25. Now, only 2 units of space is left, select the object with next largest
profit (p = 24). So, x2 =2/15

X1 X2 X3 Wi Xj pi Xi

1(2/15| 0 18x1 + 15x2/15 =20 25x1 + 24 x 2/15 = 28.2
3. Considering the objects in the order of nhon-decreasing weights w;.

X1 X2 X3 Wi Xj Pi Xi

0|2/3| 1 15x2/3 +10x1 =20 24 x2/3+15x1 =31

4. Considered the objects in the order of the ratio pi/ wi .

P1/ Wi p2/w2 p3/Wws
25/18 24/15 15/10
1.4 1.6 1.5

Sort the objects in order of the non-increasing order of the ratio p;/ xi. Select the
object with the maximum pi/ xiratio, so, x> = 1 and profit earned is 24. Now, only 5
units of space is left, select the object with next largest pi/ xiratio, so x3 = 2 and the
profit earned is 7.5.

X1 X2 X3 Wi Xj Pi Xi

0 1 1/2 15x1 +10x1/2 =20 24x 1+ 15x1/2 =31.5

This solution is the optimal solution.

JOB SEQUENCING WITH DEADLINES

When we are given a set of 'n’ jobs. Associated with each Job i, deadline di > 0 and
profit Pi > 0. For any job ‘i’ the profit pi is earned iff the job is completed by its
deadline. Only one machine is available for processing jobs. An optimal solution is the
feasible solution with maximum profit.

Sort the jobs in '}’ ordered by their deadlines. The array d [1 : n] is used to store the
deadlines of the order of their p-values. The set of jobs j [1 : k] such thatj[r],1 <r <
k are the jobs in ‘j"and d (j [1]) = d (j[2]) = ... = d (j[Kk]). To test whether J U {i} is
feasible, we have just to insert i into J preserving the deadline ordering and then verify
thatd [J[r]] <r, 1 <r < k+1.
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Example:

Let n = 4, (Pl, Py, Ps, P4,) = (100, 10, 15, 27) and (dl d> ds d4) = (2, 1, 2, 1). The
feasible solutions and their values are:

S. No | Feasible Solution Procuring Value Remarks
sequence

1 1,2 2,1 110

2 1,3 1,3 0r 3,1 115

3 1,4 4,1 127 OPTIMAL
4 2,3 2,3 25

5 3,4 4,3 42

6 1 1 100

7 2 2 10

8 3 3 15

9 4 4 27
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Algorithm:

The algorithm constructs an optimal set J of jobs that can be processed by their
deadlines.

Algorithm Greedylob (d, J, n)
// 1 is a set of jobs that can be completed by their deadlines.

J:={1};
fori:=2tondo
{

if (all jobs in J U {i} can be completed by their dead lines)
then J :=J Ui},

OPTIMAL MERGE PATERNS

Given ‘n’ sorted files, there are many ways to pair wise merge them into a single sorted
file. As, different pairings require different amounts of computing time, we want to
determine an optimal (i.e., one requiring the fewest comparisons) way to pair wise
merge ‘n’ sorted files together. This type of merging is called as 2-way merge patterns.
To merge an n-record file and an m-record file requires possibly n + m record moves,
the obvious choice choice is, at each step merge the two smallest files together. The
two-way merge patterns can be represented by binary merge trees.

Algorithm to Generate Two-way Merge Tree:

struct treenode

{
treenode * Ichild;
treenode * rchild;

+s

Algorithm TREE (n)
// list is a global of n single node binary trees

fori:=1 ton-1do

{
pt new treenode
(pt Ichild) least (list); // merge two trees with smallest
lengths
(pt rchild) least (list);
(pt weight) ((pt Ichild) weight) + ((pt rchild) weight);
insert (list, pt);
b
return least (list); // The tree left in list is the merge

tree
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Example 1:

Suppose we are having three sorted files X1, X2 and Xz of length 30, 20, and 10 records

each. Merging of the files can be carried out as follows:

S.No | First Merging Record moves in | Second Record moves in | Total no. of
first merging merging second merging records moves
X1& X2, =T1 50 T1 & X3 50 + 60 =110
2. X2 & X3 =T1 30 T &Xq 60 30 + 60 = 90

The Second case is optimal.

Example 2:

Given five files (X1, X2, X3, X4, X5) with sizes (20, 30, 10, 5, 30). Apply greedy rule to
find optimal way of pair wise merging to give an optimal solution using binary merge
tree representation.

Solution:
20 30 10 5 30
X1 X2 X3 X4 X5

Merge Xsand Xz to get 15 record moves. Call this Z;.

20 30

X1 X2 Z1 X5

/@\ 30

5

10

Merge Zi1and X; to get 35 record moves. Call this Z.

X2 z2 X5

4
/\

30 @ 30

\

20| X1

X4 5 10| X3




Design and Analysis of Algorithms

Merge X, and Xsto get 60 record moves. Call this Zs.

Z2

/@\

@ [z

Z3

/\

30

71

/ \ X1
5 10
X4 X3

30

X5

X2

Merge Z, and Zsto get 90 record moves. This is the answer. Call this Z4.

X4 X3

Therefore the total number of record moves is 15 + 35 + 60 + 95 = 205. This is an

optimal merge pattern for the given problem.

Huffman Codes

Another application of Greedy Algorithm is file compression.

Suppose that we have a file only with characters a, €, i, s, t, spaces and new lines, the
frequency of appearance of a's is 10, e's fifteen, twelve i's, three s's, four t's, thirteen

banks and one newline.

Using a standard coding scheme, for 58 characters using 3 bits for each character, the

file requires 174 bits to represent. This is shown in table below.

Character
A
E
I
S
T
Space

New line

Code Frequency
000 10
001 15
010 12
011

100 4

101 13
110 1

Total bits

30
45
36
9
12
39
3
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Representing by a binary tree, the binary code for the alphabets are as follows:

The representation of each character can be found by starting at the root and recording
the path. Use a 0 to indicate the left branch and a 1 to indicate the right branch.

If the character ¢ is at depth di and occurs f; times, the cost of the code is equal to
di fi

With this representation the total number of bits is 3x10 + 3x15 + 3x12 + 3x3 + 3x4 +
3x13 + 3x1 =174

A better code can be obtained by with the following representation.

The basic problem is to find the full binary tree of minimal total cost. This can be done
by using Huffman coding (1952).

Huffman's Algorithm:
Huffman's algorithm can be described as follows: We maintain a forest of trees. The
weights of a tree is equal to the sum of the frequencies of its leaves. If the number of
characters is 'c'. ¢ - 1 times, select the two trees T1 and T2, of smallest weight, and
form a new tree with sub-trees T1 and T2. Repeating the process we will get an optimal
Huffman coding tree.

Example:

The initial forest with the weight of each tree is as follows:

@O CED15 @12 @3 @4 13 QlD1
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The two trees with the lowest weight are merged together, creating the forest, the
Huffman algorithm after the first merge with new root T; is as follows: The total weight
of the new tree is the sum of the weights of the old trees.

ol cNoRONCYC)
offc

We again select the two trees of smallest weight. This happens to be Ty and t, which
are merged into a new tree with root T, and weight 8.

10 15 8

®0 0 ® @
ollo
oflc

In next step we merge T, and a creating T3, with weight 10+8=18. The result of this
operation in

15 12 13 18

© 0O ®
ONO.

m O
OO

After third merge, the two trees of lowest weight are the single node trees representing
i and the blank space. These trees merged into the new tree with root Ta.

25 18

® ® @
olc¥clo
olo

Yo
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The fifth step is to merge the trees with roots e and Ts. The results of this stepis
@ 25 @ 33

Finally, the optimal tree is obtained by merging the two remaining trees. The optimal
trees with root Ts is:

The full binary tree of minimal total cost, where all characters are obtained in the
leaves, uses only 146 bits.

Character Code Frequency Total bits
(Code bits X frequency)
A 001 10 30
E 01 15 30
I 10 12 24
) 00000 3 15
T 0001 4 16
Space 11 13 26
New line 00001 1 5
Total : 146
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GRAPH ALGORITHMS

Basic Definitions:

Graph G is a pair (V, E), where V is a finite set (set of vertices) and E is a finite
set of pairs from V (set of edges). We will often denote n := |V|, m := |E]|.

Graph G can be directed, if E consists of ordered pairs, or undirected, if E
consists of unordered pairs. If (u, v) E, then vertices u, and v are adjacent.

We can assign weight function to the edges: wg(e) is a weight of edge e E.
The graph which has such function assigned is called weighted.

Degree of a vertex v is the number of vertices u for which (u, v) E (denote
deg(v)). The number of incoming edges to a vertex v is called in—-degree of
the vertex (denote indeg(v)). The number of outgoing edges from a vertex is
called out-degree (denote outdeg(v)).

Representation of Graphs:

Consider graph G = (V, E), where V= {v1, v2,....,Vn}.

Adjacency matrix represents the graph as an n x n matrix A = (a;,;), where

1/ if(V,‘, Vj) E,
0, Otherwise

aij j

The matrix is symmetric in case of undirected graph, while it may be asymmetric if

the

We
have

graph is directed.
may consider various modifications. For example for weighted graphs, we may

w (V,', Vj)’ if(V,', V]) E,

a .
’ default, otherwise,

i J

Where default is some sensible value based on the meaning of the weight function
(for example, if weight function represents length, then default can be , meaning
value larger than any other value).

Adjacency List: Anarray Adj [1....... n] of pointers where for 1 < v < n, Adj [v]
points to a linked list containing the vertices which are adjacent to v (i.e. the vertices
that can be reached from v by a single edge). If the edges have weights then these
weights may also be stored in the linked list elements.

1 2 3

11 1 1 | ——= 1 2 3
20001 2 =3

30110 3 = 2

Adjacency matrix Adjacency list

11



Design and Analysis of Algorithms

Paths and Cycles:

A path is a sequence of vertices (vi, v2, . . . ... , Vk), where for all i, (vi, vis1) E. A
path is simple if all vertices in the path are distinct.

A (simple) cycle is a sequence of vertices (vi, v2, . . . . .. , Vk, Vk+1 = V1), where for
all i, (vi, vi+1) E and all vertices in the cycle are distinct except pair vi, Vk+1.

Subgraphs and Spanning Trees:

Subgraphs: A graph G’ = (V, E) is a subgraph of graph G = (V, E) iff V' V and E’
E.

The undirected graph G is connected, if for every pair of vertices u, v there exists a
path from u to v. If a graph is not connected, the vertices of the graph can be divided
into connected components. Two vertices are in the same connected component iff
they are connected by a path.

Tree is a connected acyclic graph. A spanning tree of a graph G = (V, E) is a tree
that contains all vertices of V and is a subgraph of G. A single graph can have multiple
spanning trees.
Lemma 1: Let T be a spanning tree of a graph G. Then

1. Any two vertices in T are connected by a unique simple path.

2. If any edge is removed from T, then T becomes disconnected.

3. If we add any edge into T, then the new graph will contain a cycle.

4. Number of edges in T is n-1.

Minimum Spanning Trees (MST):

A spanning tree for a connected graph is a tree whose vertex set is the same as the
vertex set of the given graph, and whose edge set is a subset of the edge set of the
given graph. i.e., any connected graph will have a spanning tree.

Weight of a spanning tree w (T) is the sum of weights of all edges in T. The Minimum
spanning tree (MST) is a spanning tree with the smallest possible weight.
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Q o—0O O O

° Ogg CE—O O

AgraphG: Three (of many possible) spanning trees from graph G:

o—0
S

A weighted graph G: The minimal spanning tree from weighted graph G:

Here are some examples:

To explain further upon the Minimum Spanning Tree, and what it applies to, let's
consider a couple of real-world examples:

1. One practical application of a MST would be in the design of a network. For
instance, a group of individuals, who are separated by varying distances, wish
to be connected together in a telephone network. Although MST cannot do
anything about the distance from one connection to another, it can be used to
determine the least cost paths with no cycles in this network, thereby
connecting everyone at a minimum cost.

2. Another useful application of MST would be finding airline routes. The vertices of
the graph would represent cities, and the edges would represent routes between
the cities. Obviously, the further one has to travel, the more it will cost, so MST
can be applied to optimize airline routes by finding the least costly paths with no
cycles.

To explain how to find a Minimum Spanning Tree, we will look at two algorithms: the
Kruskal algorithm and the Prim algorithm. Both algorithms differ in their methodology,
but both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim’s
algorithm uses vertex connections in determining the MST.

Kruskal’s Algorithm

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e.
picking an edge with the least weight in a MST).

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the
shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges
have been added. Sometimes two or more edges may have the same cost. The order in
which the edges are chosen, in this case, does not matter. Different MSTs may result,
but they will all have the same total cost, which will always be the minimum cost.



Design and Analysis of Algorithms

Algorithm:
The algorithm for finding the MST, using the Kruskal’s method is as follows:

Algorithm Kruskal (E, cost, n, t)

// E is the set of edges in G. G has n vertices. cost [u, v] is the

// cost of edge (u, v).'t’ is the set of edges in the minimum-cost spanning tree.
// The final cost is returned.

{
Construct a heap out of the edge costs using heapify;
for i :=1ton do parent [i] :=-1;
// Each vertex is in a different set.
i 1= 0; mincost :=0.0;
while ((i < n -1) and (heap not empty)) do
{
Delete a minimum cost edge (u, v) from the heap and
re-heapify using Adjust;
j := Find (u); k := Find (v);
if (j k) then
{
i=i+1;
th, 1] :=u; t[i, 2] i=v;
mincost :=mincost + cost [u, v];
Union (j, k);
b
b
if (i n-1) then write ("no spanning tree");
else return mincost;
b

Running time:
The number of finds is at most 2e, and the number of unions at most n-1.
Including the initialization time for the trees, this part of the algorithm has a
complexity that is just slightly more than O (n + e).

We can add at most n-1 edges to tree T. So, the total time for operations on T is
O(n).

Summing up the various components of the computing times, we get O (n + e log e) as
asymptotic complexity

Example 1:

14
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Arrange all the edges in the increasing order of their costs:

Cost

10

15

20

25

30 35 40

45 50

55

Edge

(1, 2)

(3, 6)

(4, 6)

(2, 6)

(1, 4)

(3, 5)

(2, 5)

(1,5) [(2,3)

(5, 6)

The edge set T together with the vertices of G define a graph that has up to n

connected components. Let us represent each component by a set of vertices in it.
These vertex sets are disjoint. To determine whether the edge (u, v) creates a cycle,

we need to check whether u and v are in the same vertex set. If so, then a cycle is

created. If not then no cycle is created. Hence two Finds on the vertex sets suffice.

When an edge is included in T, two components are combined into one and a union is

to be performed on the two sets.

Edge | Cost
(1,2) | 10
(3,6) | 15
(4,6) | 20
(2,6) | 25
(1,4)| 30
(3,5)| 35

Spanning Forest

O

1 2
1 2
1 2

4

00O

Edge Sets

Remarks

{1}, {2},
{4}, {5}, {6}

{3}

{1, 2}, {3}, {4},
{5}, {6}

The vertices 1 and
2 are in different
sets, so the edge
is combined

The vertices 3 and
6 are in different
sets, so the edge
is combined

The vertices 4 and
6 are in different
sets, so the edge
is combined

{1, 2}, {3, 6},
{4}, {5}
{1,2},{3,4, 6},
{5}

{1l 2’ 3’ 4l 6}’
{5}

The vertices 2 and
6 are in different
sets, so the edge
is combined

The vertices 1 and
4 are in the same
set, so the edge is
rejected

{1l 2l 3’ 4’ 5’ 6}

The vertices 3 and
5 arein the same
set, so the edge is
combined

15
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MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM

A given graph can have many spanning trees. From these many spanning trees, we
have to select a cheapest one. This tree is called as minimal cost spanning tree.

Minimal cost spanning tree is a connected undirected graph G in which each edge is
labeled with a number (edge labels may signify lengths, weights other than costs).
Minimal cost spanning tree is a spanning tree for which the sum of the edge labels is as

small as possible

The slight modification of the spanning tree algorithm yields a very simple algorithm for
finding an MST. In the spanning tree algorithm, any vertex not in the tree but
connected to it by an edge can be added. To find a Minimal cost spanning tree, we
must be selective - we must always add a new vertex for which the cost of the new

edge is as small as possible.

This simple modified algorithm of spanning tree is called prim's algorithm for finding an

Minimal cost spanning tree.

Prim's algorithm is an example of a greedy algorithm.

Algorithm Algorithm Prim

(E, cost, n, t)

// E is the set of edges in G. cost [1:n, 1:n] is the cost

// adjacency matrix of an n vertex graph such that cost [i, j] is

// either a positive real number or if no edge (i, j) exists.

// A minimum spanning tree is computed and stored as a set of
// edges in the array t [1:n-1, 1:2]. (t[i, 1], t [i, 2]) is an edgein
// the minimum-cost spanning tree. The final cost is returned.

{

Let (k, I) be an edge of minimum cost in E;

mincost := cost [k, I];

t[1,1]:=k; t[1, 2] :=1;

for i:=1to n do // Initialize near
if (cost [i, I] < cost [i, k]) then near [i] :=1;
else near [i] := k;

near [k] :=near [I] := 0;

for i:=2ton- 1 do // Find n - 2 additional edges for t.

{

Let j be an index such that near [j] 0 and

cost [j, near [j]] is minimum;

t[i, 1] :=j; t [i, 2] := near [j];

mincost := mincost + cost [j, near [j]];

near [j] :=0

for ki=1to ndo // Update near[].
if ((near [k] 0) and (cost [k, near [k]] > cost [k, j]))

then near [k] :=j;

by

return mincost;

16
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Running time:

We do the same set of operations with dist as in Dijkstra's algorithm (initialize
structure, m times decrease value, n - 1 times select minimum). Therefore, we get O

(n?) time when we implement dist with array, O (n + E log n) when we implement it
with a heap.

EXAMPLE 1:

Use Prim’s Algorithm to find a minimal spanning tree for the graph shown below
starting with the vertex A.

SOLUTION:

The stepwise progress of the prim’s algorithm is as follows:

Step 1:

>WwWrH|lm
> o~

0@ = G

C

B O D Vertex | A
Status | O

O E Dist. 0

Next *

17
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Step 2:

B@/®

@@@o

O

Step 3:

B@ D

NS

St;p4: @D
/T 10
© T Q5

Step 5:

Step 6
B D
/N
A G
o Fgf
Step 7:

Vertex| A B € D E F G
Status | 0 0 1 1 1 1 1
Dist. [0 3 2 4

Next * A B B A A A
Vertex| A B C D E F G
Status[0 0 o0 1 1 1 1
Dist. [0 3 2 1 4 2
Next * A B C C C A
Vertex| A B C D E F G
Status | 0 0 0 0 1 1 1
Dist. |[O 3 2 1 2 2 4
Next * A B C D C D
Vertex| A B C D E _F G
Status [0 0 0 O 1 0 1
pist. [0 3 2 1 2 2 1
Next |[* A B C D C E
Vertex|A B _C D E F _G
Status [0 0 0 0 0 1 0
Dist. [0 3 2 1 2 1 1
Next * A B C D G E
Vertex| A _B C D E F _G
Status[0 0 O O O 0 O
pist. [0 3 2 1 2 1 1
Next |* A B C D G E

18
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EXAMPLE 2:

Considering the following graph, find the minimal spanning tree using prim’s algorithm.

4

4
The cost adjacent matrix is 9

8 1

8
1
3 3
4

4

w W b O

The minimal spanning tree obtained as:

Vertex 1 Vertex 2 °
2 4

3 4 3
5 3 ‘,///
1 2

The cost of Minimal spanning tree = 11.

The steps as per the algorithm are as follows:

Algorithm near (J) = k means, the nearest vertex to J is k.

The algorithm starts by selecting the minimum cost from the graph. The minimum cost

edge is (2, 4).
K=2,1=4

Min cost = cost (2,4) =1
T[1,1]=2

T[1,2]=4

19
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fori=1to5
Begin

i=1

is cost (1, 4) < cost (1, 2)
8 <4, No

Than near (1) =2

i=2

is cost (2, 4) < cost (2, 2)
1 <, Yes

So near [2] = 4

i=3

is cost (3, 4) < cost (3, 2)
1 <4, Yes

Sonear [3] =4

i=4

is cost (4, 4) < cost (4, 2)
<1, no

So near [4] =2

i=5

is cost (5, 4) < cost (5, 2)
4 < ,yes

So near [5] = 4

end
near [k] =near[l] =0
near [2] = near[4] =0

Near matrix

2 3 4
4

2 3 4
4 | 4

2 3 4
4 | 4 |2
2 3 4
4 | 4|2
2 3 4
o |4 |o
2 3 4

Edges added to min spanning

tree:
T[1,1]=2
T[1,2] =4

fori =2ton-1(4)do
i=2

forj=1to5

j=1

near(1)0 and cost(1, near(1))
2 0Oandcost(1,2) =4

j=2
near (2) =0
j=3
isnear (3) O

4 0Oandcost (3,4) =3

20
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j=4
near (4) =0
J=5

Isnear(5) O
4 0 andcost (4,5) =4

select the min cost from the
above obtained costs, which is
3 and corresponding ] = 3

min cost = 1 + cost(3, 4)

=1+3=4 T(2,1)
T(2,2)
T(2,1) =3
T(2,2)=4 2 o 0| o0 |4
Near [j] = O 1 2 3 4 5

i.e. near (3) =0

for (k =1 ton)

K=1

is near (1) 0, yes

20

and cost (1,2) > cost(1, 3)
4 >9, No

K=2
Is near (2) 0, No

K=3
Is near (3) 0, No

K=4
Is near (4) 0, No

K=5 2 0 |o 0 3
Isnear(5) O
4 0, yes 1 2 3 4 5
and is cost (5, 4) > cost (5, 3)
4 > 3, yes

than near (5) = 3

i=3

for (j =1tob5)
J=1

isnear (1) 0
20

cost (1,2) =4

J=2
Is near (2) 0, No

AW
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1=3

Is near (3) 0, no
Near (3) =0
lJ=4

Is near (4) 0, no
Near (4) =0
J=5

Isnear(5) O
Near (5) =3 3 0, yes
And cost (5, 3) =3

Choosing the min cost from
the above obtaining costs
which is 3 and corresponding ]

=5 T@3,1)=5
T(3,2)=3

Min cost = 4 + cost (5, 3)

=4+3=7

T(3,1)=5

T(3,2)=3

Near (J) =0 near (5) =0 2 |0 0 0|0

for (k=1 to 5) 1 2 3 4 5

k=1

is near (1) 0, yes
and cost(1,2) > cost(1,5)
4 > ,No

K=2
Is near (2) 0 no

K=3
Is near (3) 0 no

K=4
Is near (4) 0 no

K=5
Is near (5) 0 no

i=4

forJ=1t%to5
J=1

Isnear (1) O
2 0, yes

cost (1,2) =4

j=2
is near (2) 0, No
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]=3

Is near (3) 0, No
Near (3) =0
J=4

Is near (4) 0, No
Near (4) =0
J=5

Is near (5) 0, No
Near (5) =0

Choosing min cost from the
above it is only '4' and
correspondingJ =1

Min cost = 7 + cost (1,2)

=744 =11 0 0 0 0 0
T4, 1)=1 T4, 1)=1
T(4,2)=2 1 2 3 4 5 T(4,2)=2

Near (J) =0 Near (1) =0

for (k =1to5)

K=1
Is near (1) 0, No

K=2
Is near (2) 0, No

K=3
Is near (3) 0, No

K=4
Is near (4) 0, No

K=5
Is near (5) 0, No

End.

4.8.7. The Single Source Shortest-Path Problem: DIJKSTRA'S ALGORITHMS

In the previously studied graphs, the edge labels are called as costs, but here we think
them as lengths. In a labeled graph, the length of the path is defined to be the sum of
the lengths of its edges.

In the single source, all destinations, shortest path problem, we must find a shortest
path from a given source vertex to each of the vertices (called destinations) in the
graph to which there is a path.

Dijkstra’s algorithm is similar to prim's algorithm for finding minimal spanning trees.
Dijkstra’s algorithm takes a labeled graph and a pair of vertices P and Q, and finds the

23
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shortest path between then (or one of the shortest paths) if there is more than one.
The principle of optimality is the basis for Dijkstra’s algorithms.

Dijkstra’s algorithm does not work for negative edges at all.

The figure lists the shortest paths from vertex 1 for a five vertex weighted digraph.

0
2
3

« (=0

Shortest Paths

»

Algorithm:

Algorithm Shortest-Paths (v, cost, dist, n)

// dist [j], 1 < j < n, is set to the length of the shortest path
// from vertex v to vertex j in the digraph G with n vertices.
// dist [v] is set to zero. G is represented by its

// cost adjacency matrix cost [1:n, 1:n].

{
for i :=1tondo
{
S [i] := false; // Initialize S.
dist [i] :=cost [v, i];
b
S[v] := true; dist[v] := 0.0; // Put vin S.
fornum :=2ton-1do
{
Determine n - 1 paths from v.
Choose u from among those vertices not in S such that dist[u] is minimum;
S[u] := true; // Put uis S.
for (each w adjacent to u with S [w] = false) do
if (dist [w] > (dist [u] + cost [u, w]) then // Update distances
dist [w] := dist [u] + cost [u, w];
b
b

Running time:
Depends on implementation of data structures for dist.

Build a structure with n elements A

at most m = E times decrease the value of an item mB

‘n’ times select the smallest value nC

For array A = O (n); B = O (1); C = O (n) which gives O (n?) total.

For heap A = O (n); B = O (log n); C = O (log n) which gives O (n + m logn)
total.

24
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Example 1:

Use Dijkstras algorithm to find the shortest path from A to each of the other six
vertices in the graph:

Solution:

The cost adjacency matrix is 4

2 0
- - - 4 1 10
Here - means infinite

The problem is solved by considering the following information:

Status[v] will be either '0’, meaning that the shortest path from v to v has
definitely been found; or '1’, meaning that it hasn't.

Dist[v] will be a number, representing the length of the shortest path from v to
vo found so far.

Next[v] will be the first vertex on the way to vp along the shortest path found so
far from v to vo

The progress of Dijkstra’s algorithm on the graph shown above is as follows:

Step 1:
B(3) (D Vertex|A. B C D E_F__ G
Status | O 1 1 1 1 1 1
@ Dist. [0 3 6
Next [* A A A A A A
YO OE:
c O
Step 2:
0L Vertex|]A. B C D E F G
B@ Status [0 0 1 1 1 1 1
Dist. |0 3 5 7
* A B B A A A

No }9 O o Next
Os
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Step 4:

4% é)G

Step 5:
B@
A@ 0 7‘}8/

Step 6:

vl
& ¢ xf/

Step 7:

Vertex| A B € D E F G
Status [0 0 0 1 11 1
Dist. ([0 3 5 6 9 7

Next * A B C C C A
Vertex] A B C D E F G
Status [0 0 0 0 1 1 1
Dist. ([0 3 5 6 8 7 10
Next * A B C D C D
Vertex| A B C D E F G
Status | O 0 0 0 1 0 1
Dist [0 3 5 6 8 7 8
Next * A B C D C F
Vertex| A B _C D E F _G
Status |0 0 0 O 0 O 1
Dist [0 3 5 6 8 7 8
Next |[* A B C D C F
Vertex A B C D E F G
Status | O 0] 0] 0] 0] 0] 0]
Dist [0 3 5 6 8 7 8
Next * A B C D C F
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UNIT V

NP-Hard and NP-Complete problems: Basic concepts, non deterministic algorithms, NP - Hard
and NP Complete classes, Cook’s theorem.

Basic concepts:

NP,Nondeterministic Polynomial time

The problems has best algorithms for their solutions have “Computing times”, that cluster into
two groups

Group 1 Group 2
> Problems with solution time bound by > Problems with solution times not
a polynomial of a small degree. bound by polynomial (simply non
polynomial )

> Italso called “Tractable Algorithms”
> Theseare hard or intractable problems

> Most ?earchm & So '”9.%}1%?9‘““

are po ynomla time algo
None of the problems in this ro
> has been soI\F/)ed%y any polyn u
> Ex: time algorithm
Ordered Search (O (log n)),
Polynomial evaluation O(n) > Ex:

Traveling Sales Person O(n? 2")
Sorting O(n.log n) Knapsack O(2"?)

No one has been able to develop a polynomial time algorithm for any problem in the 2nd group
(i.e., group 2)

So, it is compulsory and finding algorithms whose computing times are greater than polynomial
very quickly because such vast amounts of time to execute that even moderate size problems
cannot be solved.

Theory of NP-Completeness:

Show that may of the problems with no polynomial time algorithms are computational time
algorithms are computationally related.

There are two classes of non-polynomial time problems

1. NP-Hard
2. NP-Complete




NP Complete Problem: A problem that is NP-Complete can solved in polynomial time if and only
if (iff) all other NP-Complete problems can also be solved in polynomial time.

NP-Hard: Problem can be solved in polynomial time then all NP-Complete problems can be solved
in polynomial time.

All NP-Complete problemsare NP-Hard but some NP-Hard problems are not know to be NP-
Complete.

Nondeterministic Algorithms:

Algorithms with the property that the result of every operation is uniquely defined are termed as
deterministic algorithms. Such algorithms agree with the way programs are executed on a computer.

Algorithms which contain operations whose outcomes are not uniquely defined but are limited to
specified set of possibilities. Such algorithms are called nondeterministic algorithms.

The machine executing such operations is allowed to choose any one of these outcomes
subject to a termination condition to be defined later.

To specify nondeterministic algorithms, there are 3 new functions.
Choice(S). arbitrarily chooses one of the elements of sets S

Failure (),Signals an Unsuccessful completion

Success (),Signals a successful completion.

Example for Non Deterministic algorithms:

Algorithm Search(x){ \Whenever there is a set of choices that

//Problem is to search an element x leads to a successful completion then
one such set of choices is always made

//output J, such that A[J]=x; or J=0ifx isnotin A and the algorithmterminates.

J:=Choice(1,n);
if( A[J]:=X) then { A Nondeterministic algorithm

] terminates unsuccessfully if andonly if
Write(J); Success(); (iff) there exists no set of choices

} leading to a successfulsignal.
else{

write(0);
failure();

b




Nondeterministic Knapsack algorithm

Algorithm DKP(p, w, n, m, r, X){ p.given Profits

W:=0; w,given Weights
P:=0; n,Number of elements (number of
fori:=1tondo{ p or w)

x[i]:=choice(0, 1); m, Weight of bag limit
W:=W+x[i]*w[i]; P.Final Profit
P:=P+x[i]*p[i]; W, Final weight

L

if( (W>m) or (P<r) ) then Failure();

else Success();

}

The Classes NP-Hard & NP-Complete:

For measuring the complexity of an algorithm, we use the input length as the parameter. For example,
An algorithm A is of polynomial complexity p() such that the computing time of A is O(p(n)) for
every input of size n.

Decision problem/ Decision algorithm: Any problem for which the answer is either zero or one is
decision problem. Any algorithm for a decision problem is termed a decision algorithm.
Optimization problem/ Optimization algorithm: Any problem that involves the identification of
an optimal (either minimum or maximum) value of a given cost function is known as an
optimization problem. An optimization algorithm is used to solve an optimization problem.

P.is the set of all decision problems solvable by deterministic algorithms in polynomial time.

NP.is the set of all decision problems solvable by nondeterministic algorithms in polynomial
time.

Since deterministic algorithms are just a special case of nondeterministic, by this we concluded
that P .NP

®)

NP

Commonly believed relationship between P & NP




The most famous unsolvable problems in Computer Science is Whether P=NP or P£NP In
considering this problem, s.cook formulated the following question.

If there any single problem in NP, such that if we showed it to be in ‘P’ then that would imply that
P=NP.

Cook answered this question with
Theorem: Satisfiability is in P if and only if (iff) P=NP

-)Notation of Reducibility

Let L1and L2be problems, Problem L1 reduces to L2 (written L1 a L2) iff there is a way to solve
L1 by a deterministic polynomial time algorithm using a deterministic algorithm that solves L2 in
polynomial time

This implies that, if we have a polynomial time algorithm for L2, Then we can solve L1 in
polynomial time.

Here (x-) is atransitive relationi.e., Lia L2and L2a Lsthen Lia L3

A problem L is NP-Hard if and only if (iff) satisfiability reduces to L ie., Statisfiability a L

A problem L is NP-Complete if and only if (iff) L is NP-Hard and L € NP

Complete

Hard

Commonly believed relationship among P, NP, NP-Complete and NP-Hard

Mostnatural problems in NP are either in P or NP-complete.
Examples of NP-complete problems:
> Packing problems: SET-PACKING, INDEPENDENT-SET.

> Covering problems: SET-COVER, VERTEX-COVER.

> Sequencing problems: HAMILTONIAN-CYCLE, TSP.

> Partitioning problems: 3-COLOR, CLIQUE.

> Constraint satisfaction problems: SAT, 3-SAT.

> Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK.




Cook’s Theorem: States that satisfiability is in P if and only if P=NP If P=NP then
satisfiability is in P

If satisfiability is in P, then P=NP
To do this
> A-) Any polynomial time nondeterministic decision algorithm.

I-) Input of that algorithm
Then formula Q(A, I), Such that Q is satisfiable iff ‘A’ has a successful

termination with Input I.

> If the length of ‘I’ is ‘n’ and the time complexity of A is p(n) for some polynomial

p() then length of Q is O(p3(n) log n)=0(p*(n))

The time needed to construct Q is also O(p(n) log n).
> A deterministic algorithm ‘Z’ to determine the outcome of ‘A’ on any input ‘I’ Algorithm
Z computes ‘Q’ and then uses a deterministic algorithm for the satisfiability

problem to determine whether ‘Q’ is satisfiable.If O(g(m)) is the time needed to determine whether a
formula of length ‘m’ issatisfiable then the complexity of <Z’ is O(p3(n) log n + g(p3(n)log n)).

> If satisfiability is ‘p’, then ‘g(m)’ is a polynomial function of ‘m’ and thecomplexity of ‘2’
becomes ‘O(r(n))’ for some polynomial ‘r()’.

> Hence, if satisfiability is in p, then for every nondeterministic algorithm A in NP, we canobtain
a deterministic Z inp.

By this we shows that satisfiability is in p then P=NP




Trie is an efficient information retrieval data structure. Using Trie, search complexities can be brought to
optimal limit (key length). If we store keys in a binary search tree, a well balanced BST will need time
proportional to M * log N, where M is the maximum string length and N is the number of keys in the tree.
Using Trie, we can search the key in O(M) time. However, the penalty is on Trie storage requirements (Please
refer to Applications of Trie for more details)

Every node of Trie consists of multiple branches. Each branch represents a possible character of keys. We need
to mark the last node of every key as the end of the word node. A Trie node field isSEndOfWord is used to
distinguish the node as the end of the word node. A simple structure to represent nodes of the English alphabet
can be as follows,
// Trie node
struct TrieNode
{

struct TrieNode *children[ALPHABET_SIZE];

[/l iIsEndOfWord is true if the node

/I represents end of a word

bool isEndOfWord;
}
Inserting a key into Trie is a simple approach. Every character of the input key is inserted as an individual Trie
node. Note that the children is an array of pointers (or references) to next level trie nodes. The key character
acts as an index to the array children. If the input key is new or an extension of the existing key, we need to
construct non-existing nodes of the key, and mark the end of the word for the last node. If the input key is a
prefix of the existing key in Trie, we simply mark the last node of the key as the end of a word. The key length
determines Trie depth.
Searching for a key is similar to an insert operation, however, we only compare the characters and move
down. The search can terminate due to the end of a string or lack of key in the trie. In the former case, if
the isEndofWord field of the last node is true, then the key exists in the trie. In the second case, the search
terminates without examining all the characters of the key, since the key is not present in the trie.
The following picture explains the construction of trie using keys given in the example below,
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http://en.wikipedia.org/wiki/Trie
https://www.geeksforgeeks.org/advantages-trie-data-structure/
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