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     UNIT – I 

 
ALGORITHM 

 

Informal Definition: 

  An Algorithm is any well-defined computational procedure that takes 
some value or set of values as Input and produces a set of values or some value as 
output. Thus algorithm is a sequence of computational steps that transforms the i/p 
into the o/p. 
 

Formal Definition: 

  An Algorithm is a finite set of instructions that, if followed, 
accomplishes a particular task.  
All algorithms should satisfy the following criteria. 
 

1. INPUT    Zero or more quantities are externally supplied. 
2. OUTPUT  At least one quantity is produced. 
3. DEFINITENESS  Each instruction is clear and unambiguous. 
4. FINITENESS  If we trace out the instructions of an algorithm, then for all 

cases, the algorithm terminates after a finite number of steps. 
5. EFFECTIVENESS  Every instruction must very basic so that it can be 

carried out, in principle, by a person using only pencil & paper. 
 
Issues or study of Algorithm: 

 

 How to device or design an algorithm  creating and algorithm. 

 How to express an algorithm  definiteness. 

 How to analysis an algorithm  time and space complexity. 

 How to validate an algorithm  fitness. 

 Testing the algorithm  checking for error. 
 

 The study of Algorithms includes many important and active areas of research. 

There are four distinct areas of study one can identify 

1. How to device algorithms- 

     Creating an algorithm is an art which many never fully automated. A major goal 

is to study various design techniques that have proven to   be useful. By mastering 
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these design strategies, it will become easier for you to device new and useful 

algorithms. some of techniques may already be familiar, and some have been found 

to be useful. Dynamic programming is one technique. Some of the techniques are 

especially useful in fields other than computer science such as operations research 

and electrical engineering. 

2. How to validate algorithms:   

    Once an algorithm is devised, it is necessary to show that it computes the correct 

answer for all possible legal inputs. We refer to this process as algorithm 

validation. The algorithm need not as yet be expressed as a program. The purpose 

of validation is to assure us that this algorithm will work correctly independently. 

Once the validity of the method has been shown, a program can be written and a 

second phase begins. This phase is referred to as program proving or sometimes as 

program verification. 

 A proof of correctness requires that the solution be stated in two forms. One form 

is usually as a program which is annotated by a set of assertions about the input 

and output variables of the program. These assertions are often expressed in the 

predicate calculus. The second form is called a specification, and this may also be 

expressed in the predicate calculus.  A complete proof of program correctness 

requires that each statement of a programming language be precisely defined and 

all basic operations be proved correct. 

3. How to analyze algorithms: 

            As an algorithm is executed, it uses the computer's central processing unit 

(CPU) to perform operations and its memory to hold the program and data. 

Analysis of algorithms or performance analysis refers to the task of determining 

how much computing time and storage algorithms replace.we analyze the 

algorithm based on time and space complexity.The amount of time neede to run the 
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algorithm is called time complexity.The amount of memory neede to run the 

algorithm is called space complexity 

4. How to test a program: 

Testing a program consists of two phases 

1. Debugging 

2. Profiling 

Debugging: It is the process of executing programs on sample data sets to 

determine whether faulty results occur and, if so to correct them. However, as E. 

Dijkstra has pointed out, “debugging can only point to the presence of errors, but 

not to the absence". 

Profiling: Profiling or performance measurement is the process of executing a 

correct program on data sets and measuring the time and space it takes to compute 

the results.  

 

Algorithm Specification: 

 
 Algorithm can be described in three ways. 
 

1. Natural language like English: 

              When this way is choused care should be taken, we should ensure that 
each & every statement is definite. 

 
2. Graphic representation called flowchart: 

 

This method will work well when the algorithm is small& simple. 
 

3. Pseudo-code Method: 

 

                   This method describe algorithms as program, which resembles 
language like Pascal & algol. 
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Pseudo-Code Conventions for expressing algorithms:  

 
1. Comments begin with // and continue until the end of line. 
 
2. Blocks are indicated with matching braces {and}. 

 
3. An identifier begins with a letter. The data types of variables are not 

explicitly declared. 
 

4. Compound data types can be formed with records. Here is an example, 
Node. Record 
{ 
   data type – 1   data-1; 
 . 

 . 

 . 

    data type – n  data – n; 
    node * link; 
  } 
 
  Here link is a pointer to the record type node. Individual data items of 
a record can be accessed with  and period. 
 
5. Assignment of values to variables is done using the assignment statement. 

<Variable>:= <expression>; 
 

6. There are two Boolean values TRUE and FALSE. 
 

 Logical Operators       AND, OR, NOT 
Relational Operators   <, <=,>,>=, =, != 
 

7. The following looping statements are employed. 
 

For, while and repeat-until 
While Loop: 
  While < condition > do 
  { 
   <statement-1> 
    . 

    . 
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    . 

 
   <statement-n> 
   } 

 
For Loop: 

 For variable: = value-1 to value-2 step step do 
 
{ 
 <statement-1> 
  . 

  . 

  . 

<statement-n> 
} 
repeat-until: 

 
  repeat 
   <statement-1> 
    . 

    . 

    . 

 <statement-n> 
  until<condition> 
 

8. A conditional statement has the following forms. 
 

 If <condition> then <statement> 
 If <condition> then <statement-1>  
     Else <statement-1> 
 
Case statement: 

 
Case 
{ 
 : <condition-1> : <statement-1> 

    . 

    . 

    . 

 : <condition-n> : <statement-n> 
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 : else : <statement-n+1> 
} 
 

9. Input and output are done using the instructions read & write. 
 

10. There is only one type of procedure: 
Algorithm, the heading takes the form, 
 
 Algorithm Name (Parameter lists) 
 

Examples: 

 

 algorithm for find max of two numbers 

 
 algorithm Max(A,n) 
// A is an array of size n 
{ 
Result := A[1]; 
for I:= 2 to n do 
   if A[I] > Result then 
         Result :=A[I]; 
  return Result; 
} 
. 

  Algorithm for Selection Sort: 

 
 Algorithm selection sort (a,n) 
                 // Sort the array a[1:n] into non-decreasing order. 
 { 
            for i:=1 to n do 
  { 
   j:=i; 
   for k:=i+1 to n do 
    if (a[k]<a[j]) then j:=k; 
    t:=a[i]; 
    a[i]:=a[j]; 
    a[j]:=t; 
  } 

}   
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Recursive Algorithms: 

 

 A Recursive function is a function that is defined in terms of itself. 

 Similarly, an algorithm is said to be recursive if the same algorithm is 
invoked in the body. 

 An algorithm that calls itself is Direct Recursive. 

 Algorithm „A‟ is said to be Indirect Recursive if it calls another 
algorithm which in turns calls „A‟. 

 The Recursive mechanism, are externally powerful, but even more 
importantly, many times they can express an otherwise complex 
process very clearly. Or these reasons we introduce recursion here. 

 The following 2 examples show how to develop a recursive 
algorithms. 

 
 In the first, we consider the Towers of Hanoi problem, and in 
the second, we generate all possible permutations of a list of 
characters. 

 
1. Towers of Hanoi: 

 
 
 
 
 
 . 

 . 

 . 

 
 
 

 Tower A                                Tower B        Tower C 
 

                    
                    Towers of Hanoi is a problem in which there will be some disks  
which of decreasing sizes and were stacked on the tower in decreasing order of 
size bottom to top. Besides this there are two other towers (B and C) in which one 
tower will be act as destination tower and other act as intermediate tower. In this 
problem we have to move the disks from source tower to the destination tower. The 
conditions included during this problem are: 
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            1) Only one disk should be moved at a time. 
           2)  No larger disks should be kept on the smaller disks. 
 
Consider an example to explain more about towers of Hanoi: 
     
          Consider there are three towers A, B, C and there will be three disks present 
in tower A. Consider C as destination tower and B as intermediate  tower. The 
steps involved during moving the disks from A to B are 
     
          Step 1: Move the smaller disk which is present at the top of the tower                       
A to C. 
          Step 2: Then move the next smallest disk present at the top of the tower A to 
B. 
          Step 3: Now move the smallest disk present at tower C to tower B 
          Step 4: Now move the largest disk present at tower A to tower C 
          Step 5: Move the disk smallest disk present at the top of the tower B                      
to tower A. 
           Step 6: Move the disk present at tower B to tower C. 
           Step 7: Move the smallest disk present at tower A to tower C      
In this way disks are moved from source tower to destination tower. 
 
ALGORITHM FOR TOWERS OF HANOI: 
         
Algorithm Towersofhanoi (n, X ,Y, Z) 
                 { 
                         if (n>=1) then 
                                { 
                                   Towersofhanoi(n-1, X, Z, Y); 
                                   Write(“move top disk from tower “,X, “to top of tower”,Y); 
                                Towersofhanoi (n-1, Z, Y, X); 
                              } 
            } 
 
TIME COMPLEXITY OF TOWERS OF HANOI: 
  
         The recursive relation is: 
               
 t(n)=1;                 if n=0                 
        =2t(n-1)+2   if n>=1               
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 Solve the above recurrence relation then the time complexity of towers of Hanoi is 
O(2^n) 
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Performance Analysis: 

 
1. Space Complexity: 

 The space complexity of an algorithm is the amount of memory it 
needs to run to compilation. 
 
2. Time Complexity: 

 The time complexity of an algorithm is the amount of computer 
time it needs to run to compilation. 
 

Space Complexity: 

 
 The Space needed by each of these algorithms is seen to be the sum of the 
following component. 
 
1. A fixed part that is independent of the characteristics (eg:number,size)of the 
inputs and outputs. 
       The part typically includes the instruction space (ie. Space for the code), 
space for simple variable and fixed-size component variables (also called 
aggregate) space for constants, and so on. 
 
1. A variable part that consists of the space needed by component variables 

whose size is dependent on the particular problem instance being solved, the 
space needed by referenced variables (to the extent that is depends on 
instance characteristics), and the recursion stack space. 

 

 The space requirement s(p) of any algorithm p may therefore be 
written as, 

 S(P) = c+ Sp(Instance characteristics) 
Where „c‟ is a constant. 
 

          Example 1: 

 Algorithm abc(a,b,c) 
 { 
 return a+b++*c+(a+b-c)/(a+b) +4.0; 
 } 

In this algorithm sp=0;let assume each variable occupies one word. 
Then the space occupied by above algorithm is >=3. 
      S(P)>=3 
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Example 2: 

 
 Algorithm sum(a,n) 
 { 
  s=0.0; 
  for I=1 to n do 
  s= s+a[I]; 
  return s; 
 } 

 
In the above algoritm n,s and occupies one word each and array „a‟  
occupies n number of words so S(P)>=n+3  

Example 3: 

 

ALGORITHM FOR SUM OF NUMBERS USING RECURSION: 
   
        Algorithm RSum (a, n) 
            { 
                  if(n<=0) then 
                        return 0.0; 
                  else 
                        return RSum(a,n-1)+a[n]; 
            } 
The space complexity for above algorithm is: 
       
              In the above recursion algorithm the space need for the values of n, return  
address and pointer to array. The above recursive algorithm depth is (n+1). To each 
recursive call we require space for values of n, return address and pointer to array. 
So the total space occupied by the above algorithm  is S(P) >= 3(n+1)  

 
 

Time Complexity: 

 

 The time T(p) taken by a program P is  the sum of the compile time 
and the run time(execution time) 
 
The compile time does not depend on the instance characteristics. Also 
we may assume that a compiled program will be run several times without 
recompilation .This rum time is denoted by tp(instance characteristics). 
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 The number of steps any problem statemn t is assigned depends on the 
kind of statement. 
 
 For example, comments   0 steps. 
 Assignment statements  1 steps. 
[Which does not involve any calls to other algorithms] 
 
Interactive statement such as for, while & repeat-until Control part of 
the statement. 
 
->We can determine the number of steps needed by a program to solve a 
particular problem instance in Two ways. 

 
1. We introduce a variable, count into the program statement to increment 

count   with initial value 0.Statement to increment count by the appropriate 
amount are introduced into the program. 
  This is done so that each time a statement in the original program 
is executes count is incremented by the step count of that statement.   
 

 

Example1: 

 

Algorithm: 

 
Algorithm sum(a,n) 
{ 

s= 0.0; 
count = count+1; 
for I=1 to n do 
{ 
 count =count+1; 
s=s+a[I]; 
count=count+1; 
} 
count=count+1; 
count=count+1; 
return s; 
} 
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 If the count is zero to start with, then it will be 2n+3 on termination. So 
each   invocation of sum execute a total of 2n+3 steps. 

Example 2: 

 
Algorithm RSum(a,n) 
{ 

    count:=count+1;// For the if conditional 

    if(n<=0)then 

{ 

    count:=count+1; //For the return 

    return 0.0; 

} 

else 

{ 

    count:=count+1; //For the addition,function invocation and return 

   return RSum(a,n-1)+a[n]; 

} 

} 
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Example3: 

 

ALGORITHM FOR MATRIX ADDITION 

 

Algorithm Add(a,b,c,m,n) 

{ 

 for i:=1 to m do 

{ 

   count:=count+1; //For 'for i' 

   for j:=1 to n do 

  { 

     count:=count+1; //For 'for j' 

     c[i,j]=a[i,j]+b[i,j]; 

     count:=count+1; //For the assignment 

} 

count:=count+1; //For loop initialization and last time of 'for j' 
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} 

count:=count+1; //For loop initialization and last time of 'for i' 

If the count is zero to start with, then it will be 2mn+2m+1  on termination. So 

each   invocation of sum execute a total of 2mn+2m+1 steps 

 
          2. The second method to determine the step count of an algorithm is to build 
a table in which we list the total number of steps contributes by each statement. 
  
          First determine the number of steps per execution (s/e) of the statement 
and the  
           total number of times (ie., frequency) each statement is executed. 
         By combining these two quantities, the total contribution of all statements, 
the step count for the entire algorithm is obtained. 
 

 

Example 1: 

 
Statement S/e Frequency Total 

1. Algorithm Sum(a,n) 
2.{ 
3.        S=0.0; 
4.        for I=1 to n do 
5.         s=s+a[I]; 
6.         return s; 
7.  } 
 

0 
0 
1 
1 
1 
1 
0 

- 
- 
1 

n+1 
n 
1 
- 

0 
0 
1 

n+1 
n 
1 
0 

Total   2n+3 

                                     
step table for algorithm sum 

Example 2: 

 

  frequency total steps 
Statements s/e n=0              n>0 n=0               n>0 
1  algorithm Rsum(a,n) 0 _                      _ 0                          
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0 
2   {    
3      if(n<=0) then 1 1                         

1 
1                           
1 

4          return 0.0; 1 1                         
0 

1                           
0 

5      else return    
6         Rsum(a,n-1)+a[n]; 1+x 0                          

1 
0                           
1+x 

7    } 0 _                          
_ 

0                           
0 

Total   2                           
2+x 

 

step table for algorithm recursive sum 
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Example 3: 
 

Statements s/e frequency total steps 
1   Algorithm 
Add(a,b,c,m,n) 

0 _ 0 

2   { 0 _ 0 
3       for i:=1 to m do 1 m+1 m+1 
4           for j:=1 to n do 1 m(n+1) mn+m 
5              
c[I,j]:=a[I,j]+b[I,j]; 

1 mn mn 

6    } 0 _ 0 
Total   2mn+2m+1 
 

step table for matrix addition 

Example 4: 

 Algorithm to find nth fibnocci number 

Algorithm Fibonacci(n) 

//Compute the nth Fibonacci number 

{ 

    if(n<=1) then 

      write (n); 

   else 

   { 

       fnm2:=0;  

       fnm1:=1; 

      for i:=2 to n do 

     { 

         fn:=fnm1+fnm2; 
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         fnm:=fnm1;  

        fnm1:=fn; 

     } 

     write(fn); 

    } 
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Asymptotic Notations: 

            
                            The best algorithm can be measured by the efficiency of that 

algorithm.The efficiency of an algorithm is measured by computing time 

complexity.The asymptotic notations are used to find the time complexity of an 

algorithm.             

Asymptotic notations gives fastest possible,slowest possible time and average time 
of the algorithm. 
 
The basic asymptotic notations are Big-oh(O),Omega(Ω) and theta(Θ). 
1:BIG-OH(O)  NOTATION: 

    (i)It is denoted by 'O'. 
    (ii)It is used to find the upper bound time of an algorithm , that means the 
maximum time taken by the algorithm. 
Definition : Let f(n),g(n) are two non-negative functions. If there exists two 
positive constants c ,n0 . such that  c>0 and for all n>=n0   if f(n)<=c*g(n) then  we 
say that f(n)=O(g(n)) 
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THE GRAPH FOR BIG-OH (O)  NOTATION: 

Figure 1 
example : consider f(n)=2n+3 and g(n)=n^2 
Sol :  f(n)<=c*g(n)  
let us assuming as c=1,   
       then f(n)<=g(n) 
    if  n=1, 
 2n+3<=n^2  = 2(1)+3<=1^2  =>5<=1(false) 
      If n=2, 
 2n+3<=n^2=2(2)+3<=2^2= 7<=4(false) 
   if   n=3, 
 2n+3<=n^2= 2(3)+3<=3^2=9<=9   (true) 
   if   n=4, 
 2n+3<=n^2=>2(4)+3<=4^2=11<=6  (true) 
     if n=5, 
 2n+3<=n^2=2(5)+3<=5^2=13<=25  (true) 
     If  n=6,2n+3<=n^2=2(6)+3<=6^2=15<=36   (true) 
.:n>=3, f(n)=O(n^2) i.e,  f(n)=O(g(n)) 
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2:OMEGA (Ω)  NOTATION: 

 
    (i)It is denoted by ' Ω'. 
    (ii)It is used to find the lower bound time of an algorithm, that means the 
minimum time taken by an algorithm. 
 
Definition : Let f(n),g(n) are two non-negative functions. If there exists two 
positive constants c,n0.such that c>0 and for all  n>=n0.if f(n)>=c*g(n) then we 
say that f(n)=Ω(g(n)) 

THE GRAPH FOR OMEGA NOTATION:  

     

 
 
 
Example : consider f(n)=2n+5, g(n)=2n 
Sol : Let us assume as c=1 
     
     If  n=1:2n+5>=2n => 2(1)+5>=2(1) => 7>=2  (true) 
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    if  n=2:2n+3>=2n=> 2(2)+5>=2(2)=> 9>=4    (true) 
     if  n=3:2n+3>=2n=> 2(3)+5>=2(3)=> 11>=6   (true) 
 for all .:n>=1,  f(n)=Ω(n)  i.e , f(n)=Ω(g(n))  
 
3:THETA (Θ)  NOTATION:  

     (i)It is denoted by the symbol called as (Θ). 
     (ii)It is used to find the time in-between lower bound time and upper bound 
time of an  algorithm. 
Definition  : Let f(n),g(n) are two non-negative functions. If there exists positive 
constants c1,c2,n0.such that c1>0,c2>0 and for all n>=n0.if  
c1*g(n)<=f(n)<=c2*g(n)  then we  say that f(n)=Θ(g(n)) 
 

 

 

Example : consider f(n)=2n+5, g(n)=n 
Sol :c1*g(n)<=f(n)<=c2*g(n) 
 let us assuming as c1=3 then c1*g(n)=3n 
    if  n=1, 
 3n<=2n+5=>3(1)<=2(1)+5=>3<=7  (true) 
     If  n=2, 
 3n<=2n+5=>3(2)<=2(2)+5=>6<=9  (true) 
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     If  n=3, 
 3n<=2n+5=>3(3)<=2(3)+5=>9<=11   (true) 
 
       c2=4  c2*g(n)=4n 
     if  n=1, 
 2n+5<=4n=>2(1)+5<=4(1)=>7<=4   
     If  n=2, 
 2n+5<=4n=>2(2)+5<=4(2)=>9<=8   
      If n=3, 
 2n+5<=4n=>2(3)+5<=4(3)=>11<=12   (true) 
    If  n=4, 
 2n+5<=4n=>2(4)+5<=4(4)=>13<=16   (true) 
for all .:n>=3  f(n)=Θ(n)    f(n)= Θ (g(n)) 
 
4:LITTLE-OH  (O)  NOTATION:  

Definition : Let f(n),g(n) are two non-negative functions 
  if  lim [f(n) / g(n)] = 0  then we say that f(n)=o(g(n)) 

       
n                           

  example : consider f(n)=2n+3, g(n)=n^2 
sol : let us  
 lim  f(n)/g(n) = 0 

           n->  
 lim    (2n+3) / (n^2) 

             n->  
 =lim     n(2+(3/n)) / (n^2) 

               n->  
 =lim       (2+(3/n)) /n 

               n-> 

 =2/ 
 =0 
       .:f(n)=o(n^2). 
 
5:LITTLE  OMEGA NOTATION:  

Definition: Let f(n) and g(n) are two non-negative functions. 
 if lim   g(n)/f(n) = 0  then we say that f(n)=ω(g(n)) 
              n->  
example : consider f(n)=n^2, g(n)=2n+5 
sol : let us  
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 lim  g(n)/f(n) = 0 

            (n->)  
 =lim (2n+5) /(n^2) 

            (n->)  
 =lim n(2+(5/n)) / (n^2) 

           (n->)  

 =lim  (2+(5/n)) / n =2/=0 

            (n->)  
       .:f(n)= ω(n). 
 

Amortized analysis: 

 
Amortized  analysis  means  finding  average  running  time  per  operation  over a  

worst  case  sequence  of  operations. 

Suppose  a  sequence  I1,I2,D1,I3,I4,I5,I6,D2,I7  of  insert  and  delete  operations  

is  performed  on  a  set. 

Assume  that  the  actual  cost  of  each  of  the  seven  inserts  is  one  and  for  

delete  operations  D1  and  D2  have  an  actual  cost  of  8  and  10  so  the  total  

cost  of  sequence  of  operations  is  25. 

In  amortized  scheme  we  charge  some  of  the  actual  cost  of  an  operation  to  

other  operations. This  reduce  the  charge  cost  of  some  operations  and    

increases  the  cost  of  other  operations. The amortized  cost  of  an  operation  is  

the  total  cost  charge  to  it. 

The  only  requirement  is  that  the  some  of  the  amortized  complexities  of  all  

operations  in  any  sequence  of  operations  be  greater  than  or  equal  to  their  

some  of  actual  complexities  i.e., 

           (1) 

Where  amortized( i )  and  actual( i )  denote  the  amortized  and  actual  

complexities  of  the  ith  operations  in  a  sequence  on  n  operations. 

To  define  the  potential  function  p(i)  as: 
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p( i )=amortized( i )-actual( i )+p( i-1 )           (2) 

If  we  sum  equation (2)  for  1≤i≤n  we  get 

=  

 

 

P (n)-p (0) =  

From equation (1) we say that 

P (n)-p (0) ≥0              (3) 

Under  assumption  p(0)=0,p(i)  is  the  amount  by  which  the  first  „i‟  operations  

have  been  over  charged  (i.e., they  have  been  charged  more  than  the  actual  

cost). 

The  methods  to  find  amortized  cost  for  operations  are: 

1. Aggregate method. 

2. Accounting method. 

3. Potential method. 

1. Aggregate method: 

The  amortized  cost  of  each  operation  is  set equal  to  Upper  Bound  On Sum  

Of  Actual  Costs(n)/n. 

2. Accounting method: 
In  this  method  we  assign  amortized  cost  to  the  operations (possibly  by  
guessing  what  assignment  will  work),compute  the  p(i)  using  equation(2)  and  
show  that  p(n)-p(0)>=0. 
3.Potential method: 

         Here  we  start  with  potential  function  that  satisfies  equation(3)  and  
compute  amortized  complexities  using  equation(2). 
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Example: 
Let assume we  pay  $50  for  each  month  other  than  March, June, September, 
and December  $100  for  every  June, September. calculate  cost  by  using  
aggregate, accounting  and  potential  method . 
 
 

Aggregate Method: 

 
 
=200 ×└n/12┘ + 100(└n/3┘-└n/12┘) + 50(n-└n/3┘) 
=100 ×└n/12┘+50└n/3┘+50n 
≤ 100 × (n/12) + 50 × (n/3) + 50×n 
=50 n ((1/6) + (1/3) + (1)) 
=50 n ((1+2+6)/6) 
=50 n (9/6) 
=75n. 
In  the  above  problem  the  actual  cost  for  „n‟  months  does  not  exceed  200n  
from  the  aggregate  method  the  amortized  cost  for  „n‟  months  does not  
exceed  $75. The  amortized  cost  for  each  month  is  set  to  $75. 
Let  assume  p(0)=0  the  potential  for  each  and  every  month. 
 
Accounting method: 

From  the  above  table  we  see  that  using  any  cost  less  than  $75  will  result  
in  p(n)-p(0)≤0. 
The  amortized  cost  must  be  ≥ 75. 
If  the  amortized  cost ≤ 75  then  only  the  condition  p(n)-p(0)<=0. 
Potential method: 

         To  the  given  problem  we  start  with  the  potential  function  as: 
               P (n) =0          n mod 12=0 
               P (n) =25        n mod 12=1 or 3 

Month 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Actual 

cost: 

50 50 100 50 50 100 50 50 100 50 50 200 50 50 100 50 

Amortize

d cost: 

75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 

P( ): 25 50 25 50 75 50 75 100 75 100 125 0 25 50 25 50 
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               P (n) =50         n mod 12=4, 6, 2 
               P (n) =75         n mod 12=5, 7, 9 
              P (n) =100       n mod 12=8, 10   
              P (n) =125       n mod 12=4 
From  the  above  potential  function  the  amortized  cost  for  operation  is  
evaluated  for  amortized( i )=p( i )-p( i-1 )+actual( i ). 
 
Probabilistic analysis: 
             
                 In probabilistic analysis we analyze the algorithm for finding efficiency 

of the algorithm.The efficiency of algorithm is also depend upon distribution of 

inputs.In this we analyze algorithm by the concept of probability. 

            For example the company wants to recruiting k persons from the n 

persons.To do this the company assigns ranking to all n persons depend upon their 

performance.The rankings of n persons from r1 to rn.To n persons we get n! 

permutations out of n! permutations the company selects any one combination that 

is from r1 to rk 
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UNIT-II 

 

Divide and Conquer 
 

 

General Method 

 

Divide and conquer is a design strategy which is well known to breaking down 

efficiency barriers. When the method applies, it often leads to a large improvement in 

time complexity. For example, from O (n2) to O (n log n) to sort the elements. 

 

Divide and conquer strategy is as follows: divide the problem instance into two or 

more smaller instances of the same problem, solve the smaller instances recursively, 

and assemble the solutions to form a solution of the original instance. The recursion 

stops when an instance is reached which is too small to divide. When dividing the 

instance, one can either use whatever division comes most easily to hand or invest 

time in making the division carefully so that the assembly is simplified. 

 

Divide and conquer algorithm consists of two parts: 

 

Divide : Divide the problem into a number of sub problems. The sub problems 

are solved recursively. 
Conquer  : The solution to the original problem is then formed from the solutions 

to the sub problems (patching together the answers). 

 

Traditionally, routines in which the text contains at least two recursive calls are called 

divide and conquer algorithms, while routines whose text contains only one recursive 

call are not. Divide–and–conquer is a very powerful use of recursion. 

 

Control Abstraction of Divide and Conquer 

 

A control abstraction is a procedure whose flow of control is clear but whose primary 

operations are specified by other procedures whose precise meanings are left 

undefined. The control abstraction for divide and conquer technique is DANDC(P), 

where P is the problem to be solved. 
 

DANDC (P) 

{ 

if SMALL (P) then return S (p); 

else 
{ 

divide p into smaller instances p1, p2, …. Pk, k  1; 
apply DANDC to each of these sub problems; 
return (COMBINE (DANDC (p1) , DANDC (p2),…., DANDC (pk)); 

} 

} 
 

SMALL (P) is a Boolean valued function which determines whether the input size is 

small enough so that the answer can be computed without splitting. If this is so 

function ‘S’ is invoked otherwise, the problem ‘p’ into smaller sub problems. These 
sub problems p1, p2, . . . , pk are solved by recursive application of DANDC. 
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If the sizes of the two sub problems are approximately equal then the computing 
time of DANDC is: 

 

  g (n) 
T  (n) =  

2 T(n/2) f (n) 

n small 

otherwise 
 

Where, T (n) is the time for DANDC on ‘n’ inputs 

g (n) is the time to complete the answer directly for small inputs and 

f (n) is the time for Divide and Combine 

 

Binary Search 

 
If we have ‘n’ records which have been ordered by keys so that x1 < x2 < … < xn . 

When we are given a element ‘x’, binary search is used to find the corresponding 
element from the list. In case ‘x’ is present, we have to determine a value ‘j’ such 
that a[j] = x (successful search). If ‘x’ is not in the list then j is to set to zero (un 
successful search). 

 

In Binary search we jump into the middle of the file, where we find key a[mid], and 

compare  ‘x’ with  a[mid]. If x  = a[mid]  then the desired record has been  found.    

If x < a[mid] then ‘x’ must be in that portion of the file that precedes a[mid], if there 

at all. Similarly, if a[mid] > x, then further search is only necessary in that past of 

the file which follows a[mid]. If we use recursive procedure of finding the middle key 

a[mid] of the un-searched portion of a file, then every un-successful comparison of 

‘x’ with a[mid] will eliminate roughly half the un-searched portion from consideration. 

 
Since the array size is roughly halved often each comparison between ‘x’  and  
a[mid], and since an array of length ‘n’ can be halved only about log2n times before 

reaching a trivial length, the worst case complexity of Binary search is about log2n 
 

Algorithm Algorithm 

BINSRCH (a, n, x) 
// array a(1 : n) of elements in increasing order, n  0, 

// determine whether ‘x’ is present, and if so, set j such that x = a(j) 

// else return j 

 

{ 

low :=1 ; high :=n ; 

while (low < high) do 
{ 

mid :=|(low + high)/2| 

if (x < a [mid]) then high:=mid – 1; 

else if (x > a [mid]) then low:= mid + 1 
else return mid; 

} 

return 0; 

} 
 

low and high are integer variables such that each time through the loop either ‘x’ is 
found or low is increased by at least one or high is decreased by at least one. Thus 

we have two sequences of integers approaching each other and eventually low will 

become greater than high causing termination in a finite number of steps if ‘x’ is not 
present. 
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Example for Binary Search 

 

Let us illustrate binary search on the following 9 elements: 

 

Index 1 2 3 4 5 6 7 8 9 

Elements -15 -6 0 7 9 23 54 82 101 

 

The number of comparisons required for searching different elements is as follows: 

 

1. Searching for x = 101 

 

 

 

 

Number of comparisons = 4 

 

2. Searching for x = 82 

 

 

 
Number of comparisons = 3 

 

3. Searching for x = 42 

 
 

 

 
Number of comparisons = 4 

 

4. Searching for x = -14 

 
 

 
Number of comparisons = 3 

 

found 

 

 
 

low 

1 

high 

9 

mid 

5 
6 9 7 

8 9 8 
found 

 

 

 

low 

1 

high 

9 

mid 

5 
6 9 7 

6 6 6 

7 6 not found 

 

 

 

 

low 
1 

high 
9 

mid 
5 

1 4 2 

1 1 1 

2 1 not found 

 

Continuing in this manner the number of element comparisons needed to find each of 

nine elements is: 

 
Index 1 2 3 4 5 6 7 8 9 

Elements -15 -6 0 7 9 23 54 82 101 

Comparisons 3 2 3 4 1 3 2 3 4 

 

No element requires more than 4 comparisons to be found. Summing the 

comparisons needed to find all nine items and dividing by 9, yielding 25/9 or 

approximately 2.77 comparisons per successful search on the average. 

 

There are ten possible ways that an un-successful search may terminate depending 
upon the value of x. 

 
 

 

low 

1 

high 

9 

mid 

5 
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If x < a[1], a[1] < x < a[2], a[2] < x < a[3], a[5] < x < a[6], a[6] < x < a[7] or 

a[7] < x < a[8] the algorithm requires 3 element comparisons to determine that ‘x’ 
is not present. For all of the remaining possibilities BINSRCH requires 4 element 

comparisons. Thus the average number of element comparisons for an unsuccessful 

search is: 

 

(3 + 3 + 3 + 4 + 4 + 3 + 3 + 3 + 4 + 4) / 10 = 34/10 = 3.4 

 

The time complexity for a successful search is O(log n) and for an unsuccessful 

search is Θ(log n). 
 

Successful  searches un-successful searches 

Θ(1), Θ(log  n), Θ(log  n) Θ(log n) 

Best average worst best, average and worst 

 

Analysis for worst case 

 

Let T (n) be the time complexity of Binary search 

The algorithm sets mid to [n+1 / 2] 

Therefore, 

T(0) = 0  

T(n) = 1 if x = a [mid] 

 = 1 + T([(n + 1) / 2] – 1) if x < a [mid] 

 = 1 + T(n – [(n + 1)/2]) if x > a [mid] 

 
Let us restrict ‘n’ to values of the form n = 2K – 1, where ‘k’ is a non-negative 

integer. The array always breaks symmetrically into two equal pieces plus middle 

element. 

 

2K – 1 - 1  
2K – 1 - 1 

   

 2K 1  

 

Algebraically this is 
 n  1    2

K
  1  1  =  2K – 1 for K > 1 

 

 
 

Giving, 

     
 2   2  

 
T(0) = 0 

T(2k – 1) = 1 if x = a [mid] 

= 1 + T(2K - 1 – 1) if x < a [mid] 

= 1 + T(2k - 1 – 1) if x > a [mid] 

 

In the worst case the test x = a[mid] always fails, so 

w(0) = 0 

w(2k – 1) = 1 + w(2k - 1 – 1) 
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This is now solved by repeated substitution: 
 

w(2k – 1) = 1 + w(2k - 1 – 1) 

= 1 + [1 + w(2k - 2 –1)] 

= 1 + [1 + [1 + w(2k - 3 –1)]] 

= . . . . . . . . 

= . . . . . . . . 

= i + w(2k - i – 1) 

 
For i < k, letting i = k gives w(2k –1) = K + w(0) = k 

But as 2K – 1 = n, so K = log2(n + 1), so 

w(n) = log2(n + 1) = O(log n) 
 

for n = 2K–1, concludes this analysis of binary search. 

 

Although it might seem that the restriction of values of ‘n’ of the form 2K–1 weakens 
the result. In practice this does not matter very much, w(n) is a  monotonic 
increasing function of ‘n’, and hence the formula given is a good approximation even 
when ‘n’ is not of the form 2K–1. 

 

External and Internal path length: 

 

The lines connecting nodes to their non-empty sub trees are called edges. A non- 

empty binary tree with n nodes has n–1 edges. The size of the tree is the number of 

nodes it contains. 

 

When drawing binary trees, it is often convenient to represent the empty sub trees 

explicitly, so that they can be seen. For example: 
 

The tree given above in which the empty sub trees appear as square nodes is as 

follows: 

 

The square nodes are called as external nodes E(T). The square node version is 

sometimes called an extended binary tree. The round nodes are called internal nodes 

I(T). A binary tree with n internal nodes has n+1 external nodes. 

 

The height h(x) of node ‘x’ is the number of edges on the longest path leading down 
from ‘x’ in the extended tree. For example, the following tree has heights written 

inside its nodes: 
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The depth d(x) of node ‘x’ is the number of edges on path from the root to ‘x’. It is 
the number of internal nodes on this path, excluding ‘x’ itself. For example, the 
following tree has depths written inside its nodes: 

 

The internal path length I(T) is the sum of the depths of the internal nodes of ‘T’: 

I(T) =  
x  I(T ) 

 
d(x) 

 

The external path length E(T) is the sum of the depths of the external nodes: 

E(T) =  
x  E(T ) 

 
d(x) 

 

For example, the tree above has I(T) = 4 and E(T) = 12. 

 

A binary tree T with ‘n’ internal nodes, will have I(T) + 2n = E(T) external nodes. 

A binary tree corresponding to binary search when n = 16 is 

External square nodes, which lead for unsuccessful search. 

 

Let CN be the average number of comparisons in a successful search. 

C 'N be the average number of comparison in an un successful search. 

 

 

  

   

  

 

  

  
 

 

  

 

 12 

  10 14 

     11 13 15 

  2 3       16 

Represents internal nodes which lead for successful search  

16 

 

15 

14 13 12 11 10 
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Then we have, 

 

CN  1  
internal pathlengthof tree 

N 
 

C'N  
External path length of tree 

N  1 
 

 
CN   

1  
     C'N  1 

 N 
 

External path length is always 2N more than the internal path length. 

 

Merge Sort 

 

Merge sort algorithm is a classic example of divide and conquer. To sort an array, 

recursively, sort its left and right halves separately and then merge them. The time 

complexity of merge mort in the best case, worst case and average case is O(n log n) 

and the number of comparisons used is nearly optimal. 

 

This strategy is so simple, and so efficient but the problem here is that there seems 

to be no easy way to merge two adjacent sorted arrays together in place (The result 

must be build up in a separate array). 

 

The fundamental operation in this algorithm is merging two sorted lists. Because the 

lists are sorted, this can be done in one pass through the input, if the output is put in 

a third list. 

 

The basic merging algorithm takes two input arrays ‘a’ and ’b’, an output array ‘c’, 
and three counters, a ptr, b ptr and c ptr, which are initially set to the beginning of 

their respective arrays. The smaller of a[a ptr] and b[b ptr] is copied to the next 

entry in ‘c’, and the appropriate counters are advanced. When either input list is 

exhausted, the remainder of the other list is copied to ‘c’. 
 

To illustrate how merge process works. For example, let us consider the array ‘a’ 
containing 1, 13, 24, 26 and ‘b’ containing 2, 15, 27, 38. First a comparison is done 
between 1 and 2. 1 is copied to ‘c’. Increment a ptr and c ptr. 

 
 

 

and then 2 and 13 are compared. 2 is added to ‘c’. Increment b ptr and c ptr. 
 

 

 
 
 

 

    

 13 24 26 

h 

ptr 

   

 

    

 15 27 28 

j 

ptr 

   

 

        

        

i 

ptr 

       

 

    

 13 24 26 

 h 
ptr 

  

 

    

 15 27 28 

j 
ptr 

   

 

        

        

 i 
ptr 
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then 13 and 15 are compared. 13 is added to ‘c’. Increment a ptr and c ptr. 
 

 

24 and 15 are compared. 15 is added to ‘c’. Increment b ptr and c ptr. 
 

 

24 and 27 are compared. 24 is added to ‘c’. Increment a ptr and c ptr. 
 

 

26 and 27 are compared. 26 is added to ‘c’. Increment a ptr and c ptr. 
 

 

As one of the lists is exhausted. The remainder of the b array is then copied to ‘c’. 
 

 

 
h 

ptr 

 
 

Algorithm 
 

Algorithm MERGESORT (low, high) 

// a (low : high) is a global array to be sorted. 
{ 

 
i 

ptr 

if (low < high) 

{ 

mid := (low  + high)/2 //finds where to split the set 

MERGESORT(low,  mid) //sort one subset 

MERGESORT(mid+1, high) //sort the other subset 
MERGE(low, mid, high) // combine the results 

} 

} 

 

 

 

 

    

 13 24 26 

 h 
ptr 

  

 

    

 15 27 28 

 j 
ptr 

  

 

        

  13      

  i 
ptr 

     

 

    

 13  26 

  h 

ptr 

 

 

    

 15 27 28 

 j 

ptr 

  

 

        

  13 15     

   i 

ptr 

    

 

    

 13 24  

  h 

ptr 

 

 

    

 15 27 28 

  j 

ptr 

 

 

        

  13 15     

    i 

ptr 

   

 

    

 13 24 26 

   h 

ptr 

 

    

 15 27 28 

  j 

ptr 

 

 

        

  13 15 24 26   

     i 

ptr 

  

 

    

 13 24 26 

    

 

    

 15 27 28 

  j 

ptr 

 

 

        

   15 24 26 27 28 
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Algorithm MERGE (low, mid, high) 
// a (low : high) is a global array containing two sorted subsets 

// in a (low : mid) and in a (mid + 1 : high). 

// The objective is to merge these sorted sets into single sorted 

// set residing in a (low : high). An auxiliary array B is used. 
{ 

h :=low; i := low; j:= mid + 1; 

while ((h < mid) and (J < high)) do 
{ 

if (a[h] < a[j]) then 
{ 

 
} 

else 
{ 

 
} 

b[i] := a[h]; h := h + 1; 

 
 

b[i] :=a[j]; j := j + 1; 

i := i + 1; 
} 

if (h > mid) then 
for k := j to high do 

{ 

b[i] := a[k]; i := i + 1; 

} 
else 

for k := h to mid do 
{ 

b[i] := a[K]; i := i + l; 
} 

for k := low to high do 

a[k] := b[k]; 

} 

 

 

Example 

 
For example let us select the following 8 entries 7, 2, 9, 4, 3, 8, 6, 1 to illustrate 
merge sort algorithm: 
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Tree Calls of MERGESORT(1, 8) 

 
The following figure represents the sequence of recursive calls that are produced by 

MERGESORT when it is applied to 8 elements. The values in each node are the values 

of the parameters low and high. 

 
 

 

 

 

 
 

 
 

Tree Calls of MERGE() 

 
The tree representation of the calls to procedure MERGE by MERGESORT is as 
follows: 

 
 

 

 

 
 

 
Analysis of Merge Sort 

 

We will assume that ‘n’ is a power of 2, so that we always split into even halves, so 
we solve for the case n = 2k. 

 

For n = 1, the time to merge sort is constant, which we will be denote by 1. 

Otherwise, the time to merge sort ‘n’ numbers is equal to the time to do two 
recursive merge sorts of size n/2, plus the time to merge, which is linear. The 

equation says this exactly: 

 

T(1) = 1 

T(n) = 2 T(n/2) + n 

 

This is a standard recurrence relation, which can be solved several ways. We will 

solve by substituting recurrence relation continually on the right–hand side. 

 

We have, T(n) = 2T(n/2) + n 

 

 

 

1, 8 

2, 2 1, 1 

1, 2 

4, 4 3, 3 

3, 4 

6, 6 5, 5 

5, 6 

8, 8 7, 7 

7, 8 

1, 1, 2 3, 3, 4 5, 5, 6 7, 7, 8 

1, 4, 8 

5, 6, 8 1, 2, 4 

1, 4 5, 8 
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T    
2 

Since we can substitute n/2 into this main equation 
 

2 T(n/2) 

 

We have, 

= 

= 

2 (2 (T(n/4)) + n/2) 

4 T(n/4) + n 

T(n/2) = 2 T(n/4) + n 

T(n) = 4 T(n/4) + 2n 

 

Again, by substituting n/4 into the main equation, we see that 
 

4T (n/4) = 
= 

4 (2T(n/8)) + n/4 
8 T(n/8) + n 

So we have,   

T(n/4) = 2 T(n/8) + n 

T(n) = 8 T(n/8) + 3n 

 

Continuing in this manner, we obtain: 

 

T(n) = 2k T(n/2k) + K. n 

 

As n = 2k, K = log2n, substituting this in the above equation 
 

T (n)  2log 2
n
  2

k   k 
 

  

log
2 
n . n 

 
  

= n T(1) + n log n 

= n log n + n 

Representing this in O notation: 

T(n) = O(n log n) 
 

We have assumed that n = 2k. The analysis can be refined to handle cases when ‘n’ 
is not a power of 2. The answer turns out to be almost identical. 

 

Although merge sort’s running time is O(n log n), it is hardly ever used for main 

memory sorts. The main problem is that merging two sorted lists requires linear 

extra memory and the additional work spent copying to the temporary array and 

back, throughout the algorithm, has the effect of slowing down the sort considerably. 

The Best and worst case time complexity of Merge sort is O(n log n). 

 

Strassen’s Matrix Multiplication: 
 

The matrix multiplication of algorithm due to Strassens is the most dramatic example 

of divide and conquer technique (1969). 

 

The usual way to multiply two n x n matrices A and B, yielding result matrix ‘C’ as 
follows : 

 
for i := 1 to n do 

for j :=1 to n do 
c[i, j] := 0; 
for K: = 1 to n do 

c[i, j] := c[i, j] + a[i, k] * b[k, j]; 
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This algorithm requires n3 scalar multiplication’s (i.e. multiplication of single 
numbers) and n3 scalar additions. So we naturally cannot improve upon. 

 

We apply divide and conquer to this problem. For example let us considers three 

multiplication like this: 

A 11 A 12  B 11 B 12  C 11  
C 12  

   A A B B 
 

C C 

 

 21 22   21 22   21 22  
 

Then cij can be found by the usual matrix multiplication algorithm, 

C11 = A11 . B11 + A12 . B21 

C12 = A11 . B12 + A12 . B22 

C21 = A21 . B11 + A22 . B21 

C22 = A21 . B12 + A22 . B22 

 

This leads to a divide–and–conquer algorithm, which performs nxn matrix 

multiplication by partitioning the matrices into quarters and performing eight 

(n/2)x(n/2) matrix multiplications and four (n/2)x(n/2) matrix additions. 

 
T(1) = 1 

T(n) = 8 T(n/2) 

 

Which leads to T (n) = O (n3), where n is the power of 2. 

 
Strassens insight was to find an alternative method for calculating the Cij, requiring 
seven (n/2) x (n/2) matrix multiplications and eighteen (n/2) x (n/2) matrix  
additions and subtractions: 

 

P =  (A11 + A22) (B11 + B22) 

Q = (A21 + A22) B11 

R =  A11  (B12 – B22) 

S  =   A22 (B21 - B11) 

T = (A11 + A12) B22 

U  =  (A21 – A11) (B11 + B12) 

V = (A12 – A22) (B21 + B22) 

C11 = P + S – T + V 

C12 = R + T 

C21 = Q + S 

C22 = P + R - Q + U. 
 

This method is used recursively to perform the seven (n/2) x (n/2) matrix 

multiplications, then the recurrence equation for the number of scalar multiplications 

performed is: 
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T(1) = 1 

T(n) = 7 T(n/2) 
 

Solving this for the case of n = 2k is easy: 
 

T(2k) = 

 

= 

7 T(2k–1) 

 

72 T(2k-2) 

 
= 

= 

- - - - - - 

- - - - - - 

 
= 7i T(2k–i) 

 

Put i = k  
= 7k T(1) 

 

= 7k 
 

That is,  T(n)  =        7 log
2
n
 

= n log 7 

 

= O(n log 7) = O(2n.81) 

 
So, concluding that Strassen’s algorithm is asymptotically more efficient than the 

standard algorithm. In practice, the overhead of managing the many small matrices 

does not pay off until ‘n’ revolves the hundreds. 
 

Quick Sort 
 

The main reason for the slowness of Algorithms like SIS is that all comparisons and 
exchanges between keys in a sequence w1, w2, . . . . , wn take place between 
adjacent pairs. In this way it takes a relatively long time for a key that is badly out of 
place to work its way into its proper position in the sorted sequence. 

 

Hoare his devised a very efficient way of implementing this idea in the early 1960’s 
that improves the O(n2) behavior of SIS algorithm with an expected performance that 

is O(n log n). 

 

In essence, the quick sort algorithm partitions the original array by rearranging it 

into two groups. The first group contains those elements less than some arbitrary 

chosen value taken from the set, and the second group contains those elements 

greater than or equal to the chosen value. 

 

The chosen value is known as the pivot element. Once the array has been rearranged 

in this way with respect to the pivot, the very same partitioning is recursively applied 

to each of the two subsets. When all the subsets have been partitioned and 

rearranged, the original array is sorted. 

 

The function partition() makes use of two pointers ‘i’ and ‘j’ which are moved toward 
each other in the following fashion: 

 

 Repeatedly increase the pointer ‘i’ until a[i] >= pivot. 
 

 Repeatedly decrease the pointer ‘j’ until a[j] <= pivot. 
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 If j > i, interchange a[j] with a[i] 
 

 Repeat the steps 1, 2 and 3 till the ‘i’ pointer crosses the ‘j’ pointer. If ‘i’ 
pointer crosses ‘j’ pointer, the position for pivot is found and place pivot 
element in ‘j’ pointer position. 

 
The program uses a recursive function quicksort(). The algorithm of quick sort 
function sorts all elements in an array ‘a’ between positions ‘low’ and ‘high’. 

 
 It terminates when the condition low >= high is satisfied. This condition 

will be satisfied only when the array is completely sorted. 

 
 Here we choose the first element as the ‘pivot’. So, pivot = x[low]. Now it 

calls the partition function to find the proper position j of the element 
x[low] i.e. pivot. Then we will have two sub-arrays x[low], x[low+1], . . . . 
. . . x[j-1] and x[j+1], x[j+2], . . .x[high]. 

 

 It calls itself recursively to sort the left sub-array x[low], x[low+1], . . . . . 

. . x[j-1] between positions low and j-1 (where j is returned by the 

partition function). 
 

 It calls itself recursively to sort the right sub-array x[j+1], x[j+2], . . . . . . 

. . . x[high] between positions j+1 and high. 

 

Algorithm Algorithm 

QUICKSORT(low, high) 
/* sorts the elements a(low), . . . . . , a(high) which reside in the global array A(1 : 

n) into ascending order a (n + 1) is considered to be defined and must be greater 
than all elements in a(1 : n); A(n + 1) = +  */ 
{ 

if low < high then 
{ 

j := PARTITION(a, low, high+1); 

// J is the position of the partitioning element 

QUICKSORT(low, j – 1); 
QUICKSORT(j + 1 , high); 

} 
} 

 

Algorithm PARTITION(a, m, p) 

{ 

V   a(m); i   m; j  p; // A (m) is the partition element 

do 
{ 

loop  i  := i   + 1  until  a(i) > v // i moves left to right 

loop  j  := j  – 1  until  a(j)  < v // p moves right to left 

if (i < j) then INTERCHANGE(a, i, j) 
} while (i > j); 

a[m] :=a[j]; a[j] :=V; // the partition element belongs at position P 

return j; 
} 
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Algorithm INTERCHANGE(a, i, j) 
{ 

P:=a[i]; 

a[i] := a[j]; 

a[j] := p; 
} 

 

 

Example 

 

Select first element as the pivot element. Move ‘i’ pointer from left to right in search 
of an element larger than pivot. Move the ‘j’ pointer from right to left in search of an 
element smaller than pivot. If such elements are found, the elements are swapped. 

This process continues till the ‘i’ pointer crosses the ‘j’ pointer. If ‘i’ pointer crosses ‘j’ 
pointer, the position for pivot is found and interchange pivot and element at ‘j’ 
position. 

 

Let us consider the following example with 13 elements to analyze quick sort: 
 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

Remarks 

38 08 16 06 79 57 24 56 02 58 04 70 45  

pivot    i      j   swap i & j 

    04      79    

     i   j     swap i & j 

     02   57      

      j i       

(24 08 16 06 04 02) 38 (56 57 58 79 70 45) 
swap pivot 

& j 

pivot 
    

j, i 
       swap pivot 

& j 

(02 08 16 06 04) 24         

pivot, 

j 
i 

           swap pivot 

& j 

02 (08 16 06 04)          

 pivot i  j         swap i & j 

  04  16          

   j i          

 
(06 04) 08 (16) 

        swap pivot 

& j 

 pivot, 
j i 

           

 
(04) 06 

          swap pivot 

& j 
 04 

pivot, 

j, i 

            

    16 

pivot, 

j, i 

         

(02 04 06 08 16 24) 38        

       (56 57 58 79 70 45)  
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       pivot i    j swap i & j 

        45    57  

        j i     

       
(45) 56 (58 79 70 57) 

swap pivot 

& j 

       45 

pivot, 
j, i 

     
swap pivot 

& j 

         (58 
pivot 

79 
i 

70 
57) 
j 

swap i & j 

          57  79  

          j i   

         
(57) 58 (70 79) 

swap pivot 
& j 

         57 

pivot, 

j, i 

    

           (70 79)  

           pivot, 

j 
i 

swap pivot 

& j 
           70   

            79 

pivot, 

j, i 

 

       (45 56 57 58 70 79)  

02 04 06 08 16 24 38 45 56 57 58 70 79  

 

 

Analysis of Quick Sort: 

 

Like merge sort, quick sort is recursive, and hence its analysis requires solving a 

recurrence formula. We will do the analysis for a quick sort, assuming a random pivot 

(and no cut off for small files). 
 

We will take T (0) = T (1) = 1, as in merge sort. 

 

The running time of quick sort is equal to the running time of the two recursive calls 

plus the linear time spent in the partition (The pivot selection takes only constant 

time). This gives the basic quick sort relation: 

 

T (n) = T (i) + T (n – i – 1) +  C n - (1) 

 

Where, i = |S1| is the number of elements in S1. 

 

Worst Case Analysis 

 
The pivot is the smallest element, all the time. Then i=0 and if we ignore T(0)=1, 

which is insignificant, the recurrence is: 
 

T (n) = T (n – 1) +  C n n > 1 - (2) 

 

Using equation – (1) repeatedly, thus 
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1 

T (n – 1) = T (n – 2) + C (n – 1) 

 

T (n – 2) = T (n – 3) + C (n – 2) 

 

- - - - - - - - 

 

T  (2) = T (1) + C (2) 

 

Adding up all these equations yields 
 

 
T (n)  T (1)  

n 

i 
i  2 

= O  (n2) - (3) 

 

Best Case Analysis 

 

In the best case, the pivot is in the middle. To simply the math, we assume that the 

two sub-files are each exactly half the size of the original and although this gives a 

slight over estimate, this is acceptable because we are only interested in a Big – oh 

answer. 

 

T (n)    =  2 T (n/2) + C n - (4) 

 

Divide both sides by n 
 

T(n) 
 

  

n 
 

T(n / 2)  C 
n / 2 

 

- (5) 

 

Substitute n/2 for ‘n’ in equation (5) 
 

T(n / 2) 
 

  

n / 2 
 

T(n / 4)  C 
n / 4 

 

- (6) 

 

Substitute n/4 for ‘n’ in equation (6) 
 

T(n / 4) 
 

  

n / 4 
 

T(n / 8)  C 
n / 8 

 

- (7) 

- - - - - - - - 

- - - - - - - - 

Continuing in this manner, we obtain: 
 

T(2) 

2 
 

T(1)  C
 

 

- (8) 

We add all the equations from 4 to 8 and note that there are log n of them: 
 

T(n) 
 

  

n 
 

T(1) 

1 

 

 C log n - (9) 

 

Which yields, T (n) = C n log n + n = O(n  log n) - (10) 

This is exactly the same analysis as merge sort, hence we get the same answer. 

69 
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Average Case Analysis 

 
The number of comparisons for first call on partition: Assume left_to_right moves 

over k smaller element and thus k comparisons. So when right_to_left crosses 

left_to_right it has made n-k+1 comparisons. So, first call on partition makes n+1 

comparisons. The average case complexity of quicksort is 
 

T(n) = comparisons for first call on quicksort 
+ 

{Σ 1<=nleft,nright<=n [T(nleft) + T(nright)]}n = (n+1) + 2 [T(0) +T(1) + T(2) + 

----- + T(n-1)]/n 
 

nT(n) = n(n+1) + 2 [T(0) +T(1) + T(2) + ----- + T(n-2) + T(n-1)] 

 
(n-1)T(n-1) = (n-1)n + 2 [T(0) +T(1) + T(2) + ----- + T(n-2)] \ 

 
Subtracting both sides: 

 
nT(n) –(n-1)T(n-1) = [ n(n+1) – (n-1)n] + 2T(n-1) = 2n + 2T(n-1) 

nT(n) = 2n + (n-1)T(n-1) + 2T(n-1) = 2n + (n+1)T(n-1) 

T(n) = 2 + (n+1)T(n-1)/n 

The recurrence relation obtained is: 

T(n)/(n+1) = 2/(n+1) + T(n-1)/n 

 
Using the method of subsititution: 

 
T(n)/(n+1) = 2/(n+1) + T(n-1)/n 

T(n-1)/n = 2/n + T(n-2)/(n-1) 

T(n-2)/(n-1) = 2/(n-1) + T(n-3)/(n-2) 

T(n-3)/(n-2) = 2/(n-2) + T(n-4)/(n-3) 

.  . 

.  . 

T(3)/4 = 2/4 + T(2)/3 

T(2)/3 = 2/3 + T(1)/2 T(1)/2 = 2/2 + T(0) 

Adding both sides: 

T(n)/(n+1) + [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] 

= [T(n-1)/n + T(n-2)/(n-1) + ------------- + T(2)/3 + T(1)/2] + T(0) + 

[2/(n+1) + 2/n + 2/(n-1) + ---------- +2/4 + 2/3] 

Cancelling the common terms: 

T(n)/(n+1) = 2[1/2 +1/3 +1/4+--------------+1/n+1/(n+1)] 

T(n) = (n+1)2[ 2k n 1 
1/ k 

=2(n+1) [ ] 

=2(n+1)[log (n+1) – log 2] 
=2n log (n+1) + log (n+1)-2n log 2 –log 2 

T(n)= O(n log n) 

 
 

3.8. Straight insertion sort: 

 

Straight insertion sort is used to create a sorted list (initially list is empty) and at 

each iteration the top number on the sorted list is removed and put into its proper 
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place in the sorted list. This is done by moving along the sorted list, from the 
smallest to the largest number, until the correct place for the new number is located 

i.e. until all sorted numbers with smaller values comes before it and all those with 

larger values comes after it. For example, let us consider the following 8 elements for 

sorting: 

 
Index 1 2 3 4 5 6 7 8 

Elements 27 412 71 81 59 14 273 87 

 

Solution: 

 
Iteration 0: 

 
 

unsorted 

 
 

412 

 
 

71 

 
 

81 

 
 

59 

 
 

14 

 
 

273 

 
 

87 

 

 Sorted 27        

Iteration 1: unsorted 412 71 81 59 14 273 87 
 

 Sorted 27 412       

Iteration 2: unsorted 71 81 59 14 273 87 
  

 Sorted 27 71 412      

Iteration 3: unsorted 81 39 14 273 87 
   

 Sorted 27 71 81 412     

Iteration 4: unsorted 59 14 273 87 
    

 Sorted 274 59 71 81 412    

Iteration 5: unsorted 14 273 87 
     

 Sorted 14 27 59 71 81 412   

Iteration 6: unsorted 273 87 
      

 Sorted 14 27 59 71 81 273 412  

Iteration 7: unsorted 87 
       

 Sorted 14 27 59 71 81 87 273 412 
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Greedy Method
 

GENERAL METHOD 

 
Greedy is the most straight forward design technique. Most of the problems have n 

inputs and require us to obtain a subset that satisfies some constraints. Any subset 

that satisfies these constraints is called a feasible solution. We need to find a feasible 

solution that either maximizes or minimizes the objective function. A feasible solution 

that does this is called an optimal solution. 
 

The greedy method is a simple strategy of progressively building up a solution, one 

element at a time, by choosing the best possible element at each stage. At each stage, 

a decision is made regarding whether or not a particular input is in an optimal solution. 

This is done by considering the inputs in an order determined by some selection 

procedure. If the inclusion of the next input, into the partially constructed optimal 

solution will result in an infeasible solution then this input is not added to the partial 

solution. The selection procedure itself is based on some optimization measure. Several 

optimization measures are plausible for a given problem. Most of them, however, will 

result  in  algorithms  that  generate  sub-optimal  solutions.  This  version  of  greedy 

technique is called subset paradigm. Some problems like Knapsack, Job sequencing 

with deadlines and minimum cost spanning trees are based on subset paradigm. 
 

For the problems that make decisions by considering the inputs in some order, each 

decision is made using an optimization criterion that can be computed using decisions 

already made. This version of greedy method is ordering paradigm. Some problems like 

optimal storage on tapes, optimal merge patterns and single source shortest path are 

based on ordering paradigm. 
 

CONTROL ABSTRACTION 

Algorithm Greedy (a, n) 
// a(1 : n) contains the ‘n’ inputs 
{ 

solution := ;                   // initialize the solution to empty 

for i:=1 to n do 
{ 

x := select (a); 

if  feasible (solution, x) then 

solution := Union (Solution, x); 
} 

return solution; 
} 

 

Procedure Greedy describes the essential way that a greedy based algorithm will look, 

once a particular problem is chosen and the functions select, feasible and union are 

properly implemented. 
 

The function select selects an input from ‘a’, removes it and assigns its value to ‘x’. 
Feasible is a Boolean valued function, which determines if ‘x’ can be included into the 

solution vector. The function Union combines ‘x’ with solution and updates the objective 

function. 
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KNAPSACK PROBLEM 
 

Let us apply the greedy method to solve the knapsack problem. We are given ‘n’ 
objects and a knapsack. The object ‘i’ has a weight wi and the knapsack has a capacity 
‘m’. If a fraction xi, 0 < xi < 1 of object i is placed into the knapsack then a profit of pi 

xi is earned. The objective is to fill the knapsack that maximizes the total profit earned. 

 
Since the knapsack capacity is ‘m’, we require the total weight of all chosen objects to 
be at most ‘m’. The problem is stated as: 

 
maximize 

 

 
subject to 

n 

 pi  xi 

i  1 

n 

 ai     xi   M        where, 0 < xi < 1 and 1 < i <  n 
i  1

 
The profits and weights are positive numbers. 

 

 
Algorithm 

 
If the objects are already been sorted into non-increasing order of p[i] / w[i] then the 

algorithm given below obtains solutions corresponding to this strategy. 
 

Algorithm GreedyKnapsack (m, n) 
 

// P[1 : n] and w[1 : n] contain the profits and weights respectively of 
 

// Objects ordered so that p[i] / w[i] > p[i + 1] / w[i + 1]. 
 

// m is the knapsack size and x[1: n] is the solution vector. 
 

{ 

for i := 1 to n do x[i]  := 0.0                   // initialize x 

U := m; 
for i := 1 to n do 
{ 

if  (w(i) > U) then break; 

x [i] := 1.0; U := U – w[i]; 
} 
if (i < n) then x[i] := U / w[i]; 

} 
 

 
Running time: 

 
The objects are to be sorted into non-decreasing order of pi / wi ratio. But if we 
disregard the time to initially sort the objects, the algorithm requires only O(n) time. 

 

 
Example: 

 
Consider the following instance of the knapsack problem: n = 3, m = 20, (p1, p2, p3) = 
(25, 24, 15) and (w1, w2, w3) = (18, 15, 10). 

 
 
 
 
 

 



Design and Analysis of Algorithms 

 

3 

GVP College of  Engineering for Women 

 
 
 
 
 

1.  First, we try to fill the knapsack by selecting the objects in some order: 
 

x1 x2 x3  wi  xi  pi  xi 

1/2 1/3 1/4 18 x 1/2 + 15 x 1/3 + 10 x 1/4 

= 16.5 

25 x 1/2 + 24 x 1/3 + 15 x 1/4 = 

24.25 
 

 

2.  Select the object with the maximum profit first (p = 25). So, x1 = 1 and profit 

earned is 25. Now, only 2 units of space is left, select the object with next largest 
profit (p = 24). So, x2  = 2/15 

 
x1 x2 x3  wi  xi  pi  xi 

1 2/15 0 18 x 1  + 15 x 2/15 = 20 25 x 1 + 24 x 2/15 = 28.2 

 

 
 

3.  Considering the objects in the order of non-decreasing weights wi. 
 

x1 x2 x3  wi  xi  pi  xi 

0 2/3 1 15 x 2/3 + 10 x 1 = 20 24 x 2/3 + 15 x 1 = 31 

 

 

4. Considered the objects in the order of the ratio pi / wi . 
 

p1/w1 p2/w2 p3/w3 

25/18 24/15 15/10 

1.4 1.6 1.5 

 

 

Sort the objects in order of the non-increasing order of the ratio pi / xi. Select the 
object with the maximum pi / xi ratio, so, x2 = 1 and profit earned is 24. Now, only 5 
units of space is left, select the object with next largest pi / xi ratio, so x3 = ½ and the 
profit earned is 7.5. 

x1 x2 x3  wi  xi  pi  xi 

0 1 1/2 15 x 1 + 10 x 1/2 = 20 24 x 1 + 15 x 1/2 = 31.5 

 

 

This solution is the optimal solution. 
 

 
 

 

 

JOB SEQUENCING WITH DEADLINES 

 
When we are given a set of ‘n’ jobs. Associated with each Job i, deadline di > 0 and 
profit Pi  > 0. For any job ‘i’ the profit pi is earned iff the job is completed by its 
deadline. Only one machine is available for processing jobs. An optimal solution is the 
feasible solution with maximum profit. 

 
Sort the jobs in ‘j’ ordered by their deadlines. The array d [1 : n] is used to store the 

deadlines of the order of their p-values. The set of jobs j [1 : k] such that j [r], 1 ≤ r ≤ 
k are the jobs in ‘j’ and d (j [1]) ≤ d (j[2]) ≤ . . . ≤ d (j[k]). To test whether J U {i} is 

feasible, we have just to insert i into J preserving the deadline ordering and then verify 

that d [J[r]] ≤ r, 1 ≤ r ≤ k+1. 
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Example: 

 
Let n = 4, (P1, P2, P3, P4,) = (100, 10, 15, 27) and (d1  d2  d3 d4) = (2, 1, 2, 1). The 
feasible solutions and their values are: 

 
S. No Feasible Solution Procuring 

sequence 
Value Remarks 

1 1,2 2,1 110  

2 1,3 1,3 or 3,1 115  

3 1,4 4,1 127 OPTIMAL 

4 2,3 2,3 25  

5 3,4 4,3 42  

6 1 1 100  

7 2 2 10  

8 3 3 15  

9 4 4 27  
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Algorithm: 

 
The algorithm constructs an optimal set J of jobs that can be processed by their 
deadlines. 

 
Algorithm GreedyJob (d, J, n) 

 

// J is a set of jobs that can be completed by their deadlines. 
 

{ 
J := {1}; 

for i := 2 to n do 
{ 

if (all jobs in J U {i} can be completed by their dead lines) 

then J := J U {i}; 
} 

} 
 

 
 

OPTIMAL MERGE PATERNS 
 

Given ‘n’ sorted files, there are many ways to pair wise merge them into a single sorted 

file. As, different pairings require different amounts of computing time, we want to 

determine an optimal (i.e., one requiring the fewest comparisons) way to pair wise 

merge ‘n’ sorted files together. This type of merging is called as 2-way merge patterns. 

To merge an n-record file and an m-record file requires possibly n + m record moves, 

the obvious choice choice is, at each step merge the two smallest files together. The 

two-way merge patterns can be represented by binary merge trees. 
 

 
Algorithm to Generate Two-way Merge Tree: 

 
struct treenode 
{ 

treenode * lchild; 

treenode * rchild; 
}; 

 

Algorithm TREE (n) 
// list is a global of n single node binary trees 
{ 

for i := 1 to n – 1 do 
{ 

pt   new treenode 

(pt  lchild)   least (list);           //  merge two  trees  with  smallest 

lengths 
(pt  rchild)  least (list); 

(pt  weight)  ((pt  lchild)  weight) + ((pt  rchild)  weight); 
insert (list, pt);

 

 
tree 
} 

} 

return least (list);                                  // The tree left in list is the     merge
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Example 1: 

 
Suppose we are having three sorted files X1, X2 and X3 of length 30, 20, and 10 records 
each. Merging of the files can be carried out as follows: 

 

S.No First Merging Record moves in 

first merging 

Second 

merging 

Record moves in 

second merging 

Total no. of 

records moves 
1. X1 & X2 = T1 50 T1 & X3 60 50 + 60 = 110 

2. X2 & X3 = T1 30 T1 & X1 60 30 + 60 = 90 

 

The Second case is optimal. 
 

 
 

Example 2: 
 

Given five files (X1, X2, X3, X4, X5) with sizes (20, 30, 10, 5, 30). Apply greedy rule to 

find optimal way of pair wise merging to give an optimal solution using binary merge 

tree representation. 
 

 
Solution: 

 

20  30  10  5  30 

 

X1 
  

X2 
  

X3 
  

X4 
  

X5 

 
 

Merge X4 and X3 to get 15 record moves.  Call this Z1. 
 

 
X1         X2           Z1             X5 

 

20          30           15              30 
 

 
5         10 

 

 
 

Merge Z1 and X1 to get 35 record moves. Call this Z2. 
 
 

X2                Z2               X5 
 

30               35               30 
 

 
Z1   15         20   X1 

 

 
 

X4     5          10    X3 
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Merge X2 and X5 to get 60 record moves. Call this Z3. 
 
 

Z2                           Z3
 

35 
 

 
Z1  15         20 

 

X1 
 

5          10 

 

60 
 

 
 
30         30 
 

X5         X2

 

X4        X3 
 
 

Merge Z2 and Z3 to get 90 record moves. This is the answer. Call this Z4. 
 
 

Z4 
 

95 
 
 

Z2   35                    60   Z3 
 

 
Z1  15        20        30       30

 

 
5        10 

 

X1        X5      X2

 

X4      X3 
 

 

Therefore the total number of record moves is 15 + 35 + 60 + 95 = 205. This is an 
optimal merge pattern for the given problem. 

 

 
 

Huffman Codes 
 

Another application of Greedy Algorithm is file compression. 
 

Suppose that we have a file only with characters a, e, i, s, t, spaces and new lines, the 

frequency of appearance of a's is 10, e's fifteen, twelve i's, three s's, four t's, thirteen 

banks and one newline. 

 
Using a standard coding scheme, for 58 characters using 3 bits for each character, the 
file requires 174 bits to represent. This is shown in table below. 

 

Character  
 

A 

Code  
 

000 

 Frequency 
 

10 

Total bits 
 

30 

E 001  15 45 

I 010  12 36 

S 011  3 9 

T 100  4 12 

Space 101  13 39 

New line 110  1 3 
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Representing by a binary tree, the binary code for the alphabets are as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 

a             e        i             s         l           sp          nl 
 
 

The representation of each character can be found by starting at the root and recording 
the path. Use a 0 to indicate the left branch and a 1 to indicate the right branch. 

 

If the character ci  is at depth di  and occurs fi times, the cost of the code is equal to 

 di  fi 
 

With this representation the total number of bits is 3x10 + 3x15 + 3x12 + 3x3 + 3x4 + 

3x13 + 3x1 = 174 
 

A better code can be obtained by with the following representation. 
 
 
 
 
 
 
 

 

nl 
 

 

a             e         i             s         l           sp 
 
 

The basic problem is to find the full binary tree of minimal total cost. This can be done 

by using Huffman coding (1952). 
 

 
Huffman's Algorithm: 

 
Huffman's algorithm can be described as follows: We maintain a forest of trees. The 

weights of a tree is equal to the sum of the frequencies of its leaves. If the number of 

characters is 'c'. c - 1 times, select the two trees T1 and T2, of smallest weight, and 

form a new tree with sub-trees T1 and T2. Repeating the process we will get an optimal 

Huffman coding tree. 
 

 
Example: 

 
The initial forest with the weight of each tree is as follows: 

 
10          15          12          3            4           13         1 

a             e             i            s            t            sp          nl 
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The two trees with the lowest weight are merged together, creating the forest, the 
Huffman algorithm after the first merge with new root T1 is as follows: The total weight 
of the new tree is the sum of the weights of the old trees. 

 

 
10          15          12          4            13          4

 

a             e            i t           sp T1 

 
s           nl

 
 

We again select the two trees of smallest weight. This happens to be T1 and t, which 
are merged into a new tree with root T2 and weight 8. 

 
10         15         12          13             8 

a             e            i           sp             T2 

 
T1          t 

s           nl 

 
In next step we merge T2 and a creating T3, with weight 10+8=18. The result of this 
operation in 

 
 

15          12           13           18 

e               i            sp            T3 
 

 
T2         a 

 

 
T1         t 

s       nl 

 

After third merge, the two trees of lowest weight are the single node trees representing 

i and the blank space. These trees merged into the new tree with root T4. 
 

 
 

15                    25                     18 

e                     T4                     T3 

 

i            sp        T2         a 

T1          t 

s       nl 
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The fifth step is to merge the trees with roots e and T3. The results of this step is 

 
25                                   33 

T4                                   T5 

 
i            sp                   T3           e 

 

 
T2          a 

T1          t 

s        nl 
 
 

Finally, the optimal tree is obtained by merging the two remaining trees. The optimal 

trees with root T6 is: 
 
 

T6 

0           1 
 

T5                  T4 
0        1      0        1 

T3           e         i         sp 
0         1 

 

T2          a 
0        1 

 

T1         t 
0        1 

 

s        nl 
 
 

 
The full binary tree of minimal total cost, where all characters are obtained in the 

leaves, uses only 146 bits. 
 

 
Character Code Frequency Total bits 

 

(Code bits X frequency) 

A 001 10 30 

E 01 15 30 

I 10 12 24 

S 00000 3 15 

T 0001 4 16 

Space 11 13 26 

New line 00001 1 5 

  Total : 146 
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GRAPH ALGORITHMS 
 

 
Basic Definitions: 

 
  Graph G is a pair (V, E), where V is a finite set (set of vertices) and E is a finite 

set of pairs from V (set of edges). We will often denote n := |V|, m := |E|. 
 

     Graph G can be directed, if E consists of ordered pairs, or undirected, if E 

consists of unordered pairs. If (u, v)  E, then vertices u, and v are adjacent. 

 
     We can assign weight function to the edges: wG(e) is a weight of edge e  E. 

The graph which has such function assigned is called weighted. 

 
  Degree of a vertex v is the number of vertices u for which (u, v)  E (denote 

deg(v)). The number of incoming edges to a vertex v is called in–degree of 

the vertex (denote indeg(v)). The number of outgoing edges from a vertex is 

called out-degree (denote outdeg(v)). 
 

 
Representation of Graphs: 

 
Consider graph G = (V, E), where V= {v1, v2,….,vn}. 

 
Adjacency matrix represents the graph as an n x n matrix A = (ai,j), where 

 

a i,  j 
  1,  if (vi , v j )  E, 

   
  0,  otherwise

 

The matrix is symmetric in case of undirected graph, while it may be asymmetric if 

the graph is directed. 
 

We may consider various modifications. For example for weighted graphs, we may 

have
 

a i,  j 
 w (vi, v j ), 

   
 default, 

if (vi , v j )  E, 

otherwise,

 

Where default is some sensible value based on the meaning of the weight function 

(for example, if weight function represents length, then default can be , meaning 

value larger than any other value). 
 

Adjacency List: An array Adj [1 . . . . . . . n] of pointers where for 1 <  v <  n, Adj [v] 

points to a linked list containing the vertices which are adjacent to v (i.e. the vertices 

that can be reached from v by a single edge). If the edges have weights then these 

weights may also be stored in the linked list elements. 
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Paths and Cycles: 
 

A path is a sequence of vertices (v1, v2, . . . . . . , vk), where for all i, (vi, vi+1)  E. A 
path is simple if all vertices in the path are distinct. 

 
A (simple) cycle is a sequence of vertices (v1, v2, . . . . . . , vk, vk+1 = v1), where for 
all i, (vi, vi+1)  E and all vertices in the cycle are distinct except pair v1, vk+1. 

 

 
 

Subgraphs and Spanning Trees: 
 

Subgraphs: A graph G’ = (V’, E’) is a subgraph of graph G = (V, E) iff V’   V and E’ 
E. 

 
The undirected graph G is connected, if for every pair of vertices u, v there exists a 

path from u to v. If a graph is not connected, the vertices of the graph can be divided 

into connected components. Two vertices are in the same connected component iff 

they are connected by a path. 
 

Tree is a connected acyclic graph. A spanning tree of a graph G = (V, E) is a tree 

that contains all vertices of V and is a subgraph of G. A single graph can have multiple 

spanning trees. 
 

Lemma 1: Let T be a spanning tree of a graph G. Then 
 

1.  Any two vertices in T are connected by a unique simple path. 
 

2.  If any edge is removed from T, then T becomes disconnected. 
 

3.  If we add any edge into T, then the new graph will contain a cycle. 
 

4.  Number of edges in T is n-1. 
 
 

Minimum Spanning Trees (MST): 
 

A spanning tree for a connected graph is a tree whose vertex set is the same as the 

vertex set of the given graph, and whose edge set is a subset of the edge set of the 

given graph. i.e., any connected graph will have a spanning tree. 

 
Weight of a spanning tree w (T) is the sum of weights of all edges in T. The Minimum 

spanning tree (MST) is a spanning tree with the smallest possible weight. 
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G: 

 
A gra p h G:  

T h re e ( of  ma n y p o s s ib l e)  s p a n n in g t re e s f ro m gra p h G:

 
 

 
2                                                                                    2 

 

4 

G:  3                     5                                                              3 
6 

 

1                                                                                    1 
 

 
A  w e ig ht e d  gra p h  G:               T h e  min i ma l  s p a n n in g  t re e  f ro m  w e ig ht e d  gra p h  G:  

 

 
Here are some examples: 

 

 

To explain further upon the Minimum Spanning Tree, and what it applies to, let's 
consider a couple of real-world examples: 

 

1. One practical application of a MST would be in the design of a network. For 

instance, a group of individuals, who are separated by varying distances, wish 

to be connected together in a telephone network. Although MST cannot do 

anything about the distance from one connection to another, it can be used to 

determine  the  least  cost  paths  with  no  cycles  in  this  network,  thereby 

connecting everyone at a minimum cost. 
 

2. Another useful application of MST would be finding airline routes. The vertices of 

the graph would represent cities, and the edges would represent routes between 
the cities. Obviously, the further one has to travel, the more it will cost, so MST 
can be applied to optimize airline routes by finding the least costly paths with no 
cycles. 

 

 
 

To explain how to find a Minimum Spanning Tree, we will look at two algorithms: the 

Kruskal algorithm and the Prim algorithm. Both algorithms differ in their methodology, 

but both eventually end up with the MST. Kruskal's algorithm uses edges, and Prim’s 
algorithm uses vertex connections in determining the MST. 

 

 
 

Kruskal’s Algorithm 
 

This is a greedy algorithm. A greedy algorithm chooses some local optimum (i.e. 

picking an edge with the least weight in a MST). 
 

Kruskal's algorithm works as follows: Take a graph with 'n' vertices, keep on adding the 

shortest (least cost) edge, while avoiding the creation of cycles, until (n - 1) edges 

have been added. Sometimes two or more edges may have the same cost. The order in 

which the edges are chosen, in this case, does not matter. Different MSTs may result, 

but they will all have the same total cost, which will always be the minimum cost. 
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Algorithm: 

 
The algorithm for finding the MST, using the Kruskal’s method is as follows: 

 
Algorithm Kruskal (E, cost, n, t) 

// E is the set of edges in G. G has n vertices. cost [u, v] is the 

// cost of edge (u, v). ‘t’ is the set of edges in the minimum-cost spanning tree. 

// The final cost is returned. 

{ 

Construct a heap out of the edge costs using heapify; 
for i := 1 to n do parent [i] := -1;

 
i := 0; mincost := 0.0; 

// Each vertex is in a different set.

while ((i < n -1) and (heap not empty)) do 
{ 

Delete a minimum cost edge (u, v) from the heap and 

re-heapify using Adjust; 

j := Find (u); k := Find (v); 

if  (j  k) then 
{ 

i := i + 1; 

t [i, 1] := u; t [i, 2] := v; 

mincost :=mincost + cost [u, v]; 

Union (j, k); 
} 

} 

if (i  n-1) then write ("no spanning tree"); 

else return mincost; 
} 

 

 
Running time: 

 
     The number of finds is at most 2e, and the number of unions at most n-1. 

Including the initialization time for the trees, this part of the algorithm has a 

complexity that is just slightly more than O (n + e). 
 

     We can add at most n-1 edges to tree T. So, the total time for operations on T is 

O(n). 
 

Summing up the various components of the computing times, we get O (n + e log e) as 

asymptotic complexity 
 

 
 

Example 1: 
 

 

1       
1 0      

2          50  

4  5        4 0 

30                               3 5 

 

4        
25              

5 

55  

20                           15  

6 
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Arrange all the edges in the increasing order of their costs: 
 

Cost 10 15 20 25 30 35 40 45 50 55 

Edge (1, 2) (3, 6) (4, 6) (2, 6) (1, 4) (3, 5) (2, 5) (1, 5) (2, 3) (5, 6) 
 

The edge set T together with the vertices of G define a graph that has up to n 

connected components. Let us represent each component by a set of vertices in it. 

These vertex sets are disjoint. To determine whether the edge (u, v) creates a cycle, 

we need to check whether u and v are in the same vertex set. If so, then a cycle is 

created. If not then no cycle is created. Hence two Finds on the vertex sets suffice. 

When an edge is included in T, two components are combined into one and a union is 

to be performed on the two sets. 
 

Edge Cost Spanning Forest Edge Sets Remarks 

   

 
 
 

 
{1},   {2},   {3}, 

{4}, {5}, {6} 

 

 
(1, 2) 

 
10 

 

1         2            
 

 
{1, 2}, {3}, {4}, 

{5}, {6} 

 
The vertices 1 and 
2  are in  different 
sets, so the edge 

is combined 

 
(3, 6) 

 
15 

 

1         2               3              
 

6 

 
{1,  2},  {3,  6}, 
{4}, {5} 

 
The vertices 3 and 
6  are in  different 
sets, so the edge 
is combined 

 
(4, 6) 

 
20 

 

1         2               3           
 

4         6 

 
{1, 2}, {3, 4,  6}, 

{5} 

 
The vertices 4 and 
6  are in  different 
sets, so the edge 
is combined 

 
(2, 6) 

 
25 

 

1            2                     
 

4                    3 

 
6 

 
{1, 2, 3, 4,   6}, 

{5} 

 
The vertices 2 and 

6  are in  different 
sets, so the edge 
is combined 

 
(1, 4) 

 
30 

 
Reject 

 The vertices 1 and 

4 are in the same 

set, so the edge is 

rejected 

 
(3, 5) 

 
35 

 
1            2 

 

 
4                    5              3 

 
6 

 

 
 
 

{1, 2, 3, 4, 5, 6} 

 
The vertices 3 and 
5 are in the same 

set, so the edge is 
combined 
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MINIMUM-COST SPANNING TREES: PRIM'S ALGORITHM 

 
A given graph can have many spanning trees. From these many spanning trees, we 
have to select a cheapest one. This tree is called as minimal cost spanning tree. 

 
Minimal cost spanning tree is a connected undirected graph G in which each edge is 

labeled with a number (edge labels may signify lengths, weights other than costs). 

Minimal cost spanning tree is a spanning tree for which the sum of the edge labels is as 

small as possible 
 

The slight modification of the spanning tree algorithm yields a very simple algorithm for 

finding  an  MST. In  the  spanning  tree  algorithm,  any  vertex  not  in the tree  but 

connected to it by an edge can be added. To find a Minimal cost spanning tree, we 

must be selective - we must always add a new vertex for which the cost of the new 

edge is as small as possible. 
 

This simple modified algorithm of spanning tree is called prim's algorithm for finding an 

Minimal cost spanning tree. 
 

Prim's algorithm is an example of a greedy algorithm. 
 

 
Algorithm Algorithm Prim 

 
(E, cost, n, t) 
// E is the set of edges in G. cost [1:n, 1:n] is the cost 

// adjacency matrix of an n vertex graph such that cost [i, j] is 

// either a positive real number or  if no edge (i, j) exists. 
// A minimum spanning tree is computed and stored as a set of 

// edges in the array t [1:n-1, 1:2]. (t [i, 1], t [i, 2]) is an edge in 

// the minimum-cost spanning tree. The final cost is returned. 

{ 

Let (k, l) be an edge of minimum cost in E; 

mincost := cost [k, l]; 
t [1, 1] := k; t [1, 2] := l; 

for  i :=1 to n do                                   // Initialize near 

if  (cost [i, l] < cost [i, k]) then near [i] := l; 

else near [i] := k; 

near [k] :=near [l] := 0; 
for i:=2 to n -  1 do                               // Find n - 2 additional edges for t. 
{ 

Let j be an index such that near [j]  0 and 

cost [j, near [j]] is minimum; 

t [i, 1] := j; t [i, 2] := near [j]; 

mincost := mincost + cost [j, near [j]]; 

near [j] := 0 
for   k:= 1 to n do                                  // Update near[]. 

if ((near [k]  0) and (cost [k, near [k]] > cost [k, j])) 

then near [k] := j; 
} 

return mincost; 
} 
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Running time: 
 

We  do  the  same  set  of  operations  with  dist  as  in  Dijkstra's  algorithm  (initialize 
structure, m times decrease value, n - 1 times select minimum). Therefore, we get O 

(n2) time when we implement dist with array, O (n + E  log n) when we implement it 
with a heap. 

 

EXAMPLE 1: 

 
Use Prim’s Algorithm to find a minimal spanning tree for the graph shown below 
starting with the vertex A. 

 

4 
B                 D 

 

3        2      1         2    
4
 

4     E     1 
 

A               C        2            G 
6 

2      F      1 
 

 

SOLUTION: 





The stepwise progress of the prim’s algorithm is as follows: 
 
 

Step 1: 
 

 
 

B    3  D Vertex A     B C     D     E     F G 

   Status 0     1 1     1     1     1 1 
  E Dist. 0     3 6                    

A    0            6 
 

C 

 
   F 

 G Next      *     A     A     A     A     A      A
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Vertex A B C D E F G 

Status 0 0 1 1 1 1 1 
Dist. 0 3 2 4   
Next * A B B A A A 

 

Vertex A B C D E F G 

Status 0 0 0 1 1 1 1 
Dist. 0 3 2 1 4 2 
Next * A B C C C A 

 

Vertex A     B      C      D      E      F        G   

Status 0 0 0 0 0 1 0 
Dist. 0 3 2 1 2 1 1 

Next * A B C D G E 

 

 
 
 
 
 

Step 2: 
 
 

B    3 
 

 
A    0           2 

 

 
4   D 
 

 
  E

 

C           
F 

 

Step 3: 
 
 

B    3                   1     D 

 
4    E 

A   0            2                              G 
 

C           2     F 

 

 
Step 4: 

B    3                   1     D 
 

 
2     E 

A   0             2                          4    G 
 

C                        2     F 

Vertex   A     B     C     D     E     F       G 

Status   0     0     0     0     1     1       1 
Dist.     0     3     2     1     2     2       4 

Next      *     A     B     C     D     C      D

 

Step 5: 
 
 

B    3                   1     D 
 

 
2    E 

A   0            2                          1    G 
 

C           2     F 

 

 
 

Vertex   A     B     C     D     E     F       G 

Status   0     0     0     0     1     0       1 
Dist.     0     3     2     1     2     2       1 

Next      *     A     B     C     D     C      E

 
Step 6: 

 
 

B    3                   1     D 

 
2     E 

A   0            2                          1    G 
 

C           1     F 

Step 7: 
 

 
B    3                   1     D 

 

 
Vertex   A    B    C    D    E     F      G   

Status   0     0     0     0     0     0       0
 

2     E 
A   0            2                           1    G 

Dist.     0     3 
Next      *     A 

2     1     2     1       1 
B     C     D     G      E

 

C           1     F 
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Vertex 1 Vertex 2 

2 4 

3 4 

5 3 

1 2 

 

 
 
 
 
 

EXAMPLE 2: 
 

 
Considering the following graph, find the minimal spanning tree using prim’s algorithm. 

 
 

8 
1               4      4 

9 

4                   3             5 
1 

2               3       3 
4 

 
 

    4   9 


   4     4 
The cost adjacent matrix  is  9 4   


8   1   3 


8    


1    
3   3 


    4 

        3   4 


The minimal spanning tree obtained as: 

 

 

 
 

1                 4 
 

 

4     1          3                   5 
3 

 

2                 3 
 

 
 
 
 

The cost of Minimal spanning tree = 11. 
 

The steps as per the algorithm are as follows: 
 

Algorithm near (J) = k means, the nearest vertex to J is k. 
 

The algorithm starts by selecting the minimum cost from the graph. The minimum cost 

edge is (2, 4). 
 

K = 2, l = 4 

Min cost = cost (2, 4) = 1 
 

T [1, 1] = 2 
 

T [1, 2] = 4 
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for i = 1 to 5 

Begin 

i = 1 
is cost (1, 4) < cost (1, 2) 
8 < 4, No 

Than near (1) = 2 
 

 
i = 2 
is cost (2, 4) < cost (2, 2) 

1 < , Yes 

So near [2] = 4 
 

 
i = 3 

is cost (3, 4) < cost (3, 2) 

1 < 4, Yes 

So near [3] = 4 
 

 
i = 4 
is cost (4, 4) < cost (4, 2) 

 < 1, no 

So near [4] = 2 
 

 
i = 5 

is cost (5, 4) < cost (5, 2) 
4 < , yes 

So near [5] = 4 
 

 
end 

 
near [k] = near [l] = 0 

near [2] = near[4] = 0 

Near matrix 
 

 
 
 
 

2 
 

1    2      3     4     5 
 

 
 
 

2     4 

 
1     2     3     4     5 

 

 
 
 

2    4      4 

 
1     2     3     4     5 

 
 

 
2    4       4      2 

 

 

1    2      3     4     5 
 
 

 
2    4       4     2     4 

 

 

1    2      3     4     5 
 
 

 
2    0       4     0     4 

 

 

1      2     3      4    5 

Edges added to min spanning 
tree: 

 
T [1, 1] = 2 

T [1, 2] = 4 

 
for i = 2 to n-1 (4) do 

 
i = 2 

 
for j = 1 to 5 

j = 1 

near(1)0 and cost(1, near(1)) 

2  0 and cost (1, 2) = 4 
 
j = 2 

near (2) = 0 
 
j = 3 

is near (3)  0 

4  0 and cost (3, 4) = 3 
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2 0 0 0 4 

 

2 0 0 0 3 

 

 
 
 
 
 

j = 4 
near (4) = 0 

 
J = 5 
Is near (5)  0 

4  0 and cost (4, 5) = 4 

 
select the min cost from the 
above obtained costs, which is 
3 and corresponding J = 3 

 
min cost = 1 + cost(3, 4) 

= 1 + 3 = 4                                                                       T (2, 1) = 3 
T (2, 2) = 4 

T (2, 1) = 3 

T (2, 2) = 4 
 

 
 

Near [j] = 0                                  1     2     3     4     5 
i.e. near (3) =0 

 

 
for (k = 1 to n) 

 

K = 1 

is near (1)  0, yes 

2  0 
and cost (1,2) > cost(1, 3) 

4 > 9, No 
 

K = 2 
Is near (2) 0, No 

 
K = 3 
Is near (3)  0, No 

 
K = 4 
Is near (4)  0, No 

 

 
K = 5 
Is near (5)  0 

4  0, yes                                   1     2     3     4       5 

and is cost (5, 4) > cost (5, 3) 
4 > 3, yes 

than near (5) = 3 

 
i = 3 

 

for (j = 1 to 5) 
J = 1 

is near (1) 0 
2  0 

cost (1, 2) = 4 

 
J = 2 
Is near (2) 0, No 
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2 0 0 0 0 

 

 
 
 
 
 

J = 3 
Is near (3)  0, no 

Near (3) = 0 

 
J = 4 
Is near (4)  0, no 

Near (4) = 0 

 
J = 5 
Is near (5)  0 

Near (5) = 3  3  0, yes 

And cost (5, 3) = 3 

 
Choosing the min cost from 
the above obtaining costs 
which is 3 and corresponding J 
= 5                                                                                                 T (3, 1) = 5 

T (3, 2) = 3 

Min cost = 4 + cost (5, 3) 
= 4 + 3 = 7 

 

T (3, 1) = 5 

T (3, 2) = 3 

 

 

Near (J) = 0  near (5) = 0 

 

for (k=1 to 5) 
 

1 
 

2 
 

3 
 

4 
 

5 

 

k = 1 
 

is near (1)  0, yes 

and cost(1,2) > cost(1,5) 
4 > , No 

 

K = 2 
Is near (2)  0 no 

 

K = 3 
Is near (3)  0 no 

 

K = 4 
Is near (4)  0 no 

 

K = 5 
Is near (5)  0 no 

 

i = 4 

 

for J = 1 to 5 
J = 1 

Is near (1)  0 

2  0, yes 

cost (1, 2) = 4 

 
j = 2 
is near (2)  0, No 
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J = 3 
Is near (3)  0, No 

Near (3) = 0 

 
J = 4 
Is near (4)  0, No 

Near (4) = 0 

 
J = 5 
Is near (5)  0, No 

Near (5) = 0 

 
Choosing min cost from the 

above it is only '4' and 

corresponding J = 1 
 
Min cost = 7 + cost (1,2) 

= 7+4 = 11 

 
T (4, 1) = 1 

T (4, 2) = 2 
 
Near (J) = 0  Near (1) = 0 

for (k = 1 to 5) 

K = 1 
Is near (1)  0, No 

 
K = 2 
Is near (2)  0, No 

 
K = 3 

Is near (3)  0, No 
 
K = 4 
Is near (4)  0, No 

 
K = 5 
Is near (5)  0, No 

 
End. 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T (4, 1) = 1 

T (4, 2) = 2 

0 0 0 0 0  

 

1     2     3      4      5 

 

 
 
 

4.8.7. The Single Source Shortest-Path Problem: DIJKSTRA'S ALGORITHMS 
 

In the previously studied graphs, the edge labels are called as costs, but here we think 

them as lengths. In a labeled graph, the length of the path is defined to be the sum of 

the lengths of its edges. 
 

In the single source, all destinations, shortest path problem, we must find a shortest 

path from a given source vertex to each of the vertices (called destinations) in the 

graph to which there is a path. 
 

Dijkstra’s algorithm is similar to prim's algorithm for finding minimal spanning trees. 
Dijkstra’s algorithm takes a labeled graph and a pair of vertices P and Q, and finds  the 
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shortest path between then (or one of the shortest paths) if there is more than one. 

The principle of optimality is the basis for Dijkstra’s algorithms. 
 

Dijkstra’s algorithm does not work for negative edges at all. 
 

The figure lists the shortest paths from vertex 1 for a five vertex weighted digraph. 
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Shortest Paths 
 

Algorithm: 
 

Algorithm Shortest-Paths (v, cost, dist, n) 
// dist [j], 1 < j < n, is set to the length of the shortest path 
// from vertex v to vertex j in the digraph G with n vertices. 

// dist [v] is set to zero. G is represented by its 
// cost adjacency matrix cost [1:n, 1:n]. 
{ 

for i :=1 to n do 
{ 

S [i] := false;                                   // Initialize S. 
dist [i] :=cost [v, i]; 

} 

S[v] := true; dist[v]  := 0.0;                         // Put v in S. 

for num := 2 to n – 1 do 
{ 

Determine n - 1 paths from v. 

Choose u from among those vertices not in S such that dist[u] is minimum; 

S[u] := true;                                               // Put u is S. 
for (each w adjacent to u with S [w] = false) do 

if (dist [w] > (dist [u] + cost [u,  w]) then      // Update distances 
dist [w] := dist [u] + cost [u, w]; 

} 
} 

 

 
Running time: 

 
Depends on implementation of data structures for dist. 

 
     Build a structure with  n elements                                  A 

 

     at most m = E  times decrease the value of  an item   mB 
 

     ‘n’ times select the  smallest value                                nC 

     For array A = O (n); B = O (1); C = O (n) which gives O (n2) total. 
 

     For heap A = O (n); B = O (log n); C = O (log n) which gives O (n + m log n) 
 

total. 
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Status 0 1 1 1 1 1 1 
Dist. 0 3 6    
Next * A A A A A A 

 

Vertex A B C D E F G 

Status 0 0 1 1 1 1 1 
Dist. 0 3 5 7   
Next * A B B A A A 

 



 
 
 
 
 

Example 1: 

 
Use Dijkstras algorithm to find the shortest path from A to each of the other six 
vertices in the graph: 
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Solution: 
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   The cost adjacency matrix is     4   1   0   2    -   - 
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Here – means infinite 

   

The problem is solved by considering the following information: 
 

     Status[v] will be either ‘0’, meaning that the shortest path from v to v0 has 
definitely been found; or ‘1’, meaning that it hasn’t. 

 

  Dist[v] will be a number, representing the length of the shortest path from v to 

v0 found so far. 

 
  Next[v] will be the first vertex on the way to v0 along the shortest path found so 

far from v to v0 

 

The progress of Dijkstra’s algorithm on the graph shown above is as follows: 
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Vertex A B C D E F G 

Status 0 0 0 1 1 1 1 
Dist. 0 3 5 6 9 7 
Next * A B C C C A 
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Step 3: 
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Step 5: 
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Step 6: 
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Step 7: 
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UNIT  V 

 

NP-Hard and NP-Complete problems: Basic concepts, non deterministic algorithms, NP - Hard 

and NP Complete classes, Cook’s theorem. 

 

Basic concepts: 

NP -)  Nondeterministic Polynomial time 

The problems has best algorithms for their solutions have “Computing times”, that cluster into 

two groups 

 

Group 1 Group 2 

> Problems with solution time bound by 
a polynomial of a small degree. 

 

> It also called “Tractable Algorithms” 

 
> Most Searching & Sorting algorithms 

are polynomial time algorithms 
 
 

> Ex: 

Ordered Search (O (log n)), 

Polynomial evaluation O(n) 

 

Sorting O(n.log n) 

> Problems with solution times not 
bound by polynomial (simply non 
polynomial ) 

 

> These are hard or intractable problems 

 
> None of the problems in this group 

has been solved by any polynomial 

time algorithm 

 

> Ex: 

Traveling Sales Person O(n2 2n) 

Knapsack O(2n/2) 

 

No one has been able to develop a polynomial time algorithm for any problem in the 2nd group 

(i.e., group 2) 

So, it is compulsory and finding algorithms whose computing times are greater than polynomial 

very quickly because such vast amounts of time to execute that even moderate size problems 

cannot be solved. 

Theory of NP-Completeness: 

Show that may of the problems with no polynomial time algorithms are computational time 

algorithms are computationally related. 

There are two classes of non-polynomial time problems 
 

1. NP-Hard 

2. NP-Complete 
 

 



 

NP Complete Problem: A problem that is NP-Complete can solved in polynomial time if and only 

if (iff) all other NP-Complete problems can also be solved in polynomial time. 

NP-Hard: Problem can be solved in polynomial time then all NP-Complete problems can be solved 

in polynomial time. 

All NP-Complete problems are NP-Hard but some NP-Hard problems are not know to be NP- 

Complete. 

Nondeterministic Algorithms: 

Algorithms with the property that the result of every operation is uniquely defined are termed as 

deterministic algorithms. Such algorithms agree with the way programs are executed on a computer. 

Algorithms which contain operations whose outcomes are not uniquely defined but are limited to 

specified set of possibilities. Such algorithms are called nondeterministic algorithms. 

The machine executing such operations is allowed to choose any one of these outcomes 

subject to a termination condition to be defined later. 

To specify nondeterministic algorithms, there are 3 new functions. 

Choice(S) - )      arbitrarily  chooses   one   of  the  elements   of   sets   S 

Failure ()-) Signals an Unsuccessful completion 

Success ()-) Signals a successful completion. 

Example for Non Deterministic algorithms: 

 

Algorithm Search(x){ 

//Problem is to search an element x 

//output J, such that A[J]=x; or J=0 if x is not in A 

J:=Choice(1,n); 

if( A[J]:=x) then { 

Write(J); Success(); 

} 

else{ 

write(0);  

failure(); 

} 

Whenever there is a set of choices that 

leads to a successful completion then 

one such set of choices is always made 

and the algorithm terminates. 

A Nondeterministic algorithm 

terminates unsuccessfully if and only if 

(iff) there exists no set of choices 

leading to a successful signal. 

  

 

 

 
 



 

 
 

Nondeterministic Knapsack algorithm 

Algorithm DKP(p, w, n, m, r, x){ p - )  given Profits 

W:=0; w - )  given Weights 

P:=0; n-)  Number of elements (number of 

for i:=1 to n do{ p or w) 

x[i]:=choice(0, 1); m - )  Weight of bag limit 

W:=W+x[i]*w[i]; P- ) Final Profit 

P:=P+x[i]*p[i]; W- ) Final weight 

}  

if( (W>m) or (P<r) ) then Failure();  

else Success();  

}  

 

The Classes NP-Hard & NP-Complete: 
For measuring the complexity of an algorithm, we use the input length as the parameter. For example, 

An algorithm A is of polynomial complexity p() such that the computing time of A is O(p(n)) for 

every input of size n. 

Decision problem/ Decision algorithm: Any problem for which the answer is either zero or one is 

decision problem. Any algorithm for a decision problem is termed a decision algorithm. 

Optimization problem/ Optimization algorithm: Any problem that involves the identification of 

an optimal (either minimum or maximum) value of a given cost function is known as an 

optimization problem. An optimization algorithm is used to solve an optimization problem. 

 
P-) is the set of all decision problems solvable by deterministic algorithms in polynomial time. 

NP-) is the set of all decision problems solvable by nondeterministic algorithms in polynomial 

time. 

 

Since deterministic algorithms are just a special case of nondeterministic, by this we concluded 

that P ⊆ NP 

 
 

Commonly believed relationship between P & NP 
 

 

 

 

 

 

 
 



 

 

The most famous unsolvable problems in Computer Science is Whether P=NP or P≠NP In 

considering this problem, s.cook formulated the following question. 

If there any single problem in NP, such that if we showed it to be in ‘P’ then that would imply that 

P=NP. 

Cook answered this question with 
 

Theorem: Satisfiability is in P if and only if (iff) P=NP 

-)Notation of Reducibility 

 
Let L1 and L2 be problems, Problem L1 reduces to L2 (written L1 α L2) iff there is a way to solve 

L1 by a deterministic polynomial time algorithm using a deterministic algorithm that solves L2 in 

polynomial time 

This implies that, if we have a polynomial time algorithm for L2, Then we can solve L1 in 

polynomial time. 

Here α-) is a transitive relation i.e., L1 α L2 and L2 α L3 then L1 α L3 

A problem L is NP-Hard if and only if (iff) satisfiability reduces to L ie., Statisfiability α L 

 

A problem L is NP-Complete if and only if (iff) L is NP-Hard and L Є NP 

 

 

 

 

 

 

 

 

 

 

 

Commonly believed relationship among P, NP, NP-Complete and NP-Hard  

Most natural problems in NP are either in P or NP-complete. 
 
Examples of NP-complete problems: 
 

> Packing problems: SET-PACKING, INDEPENDENT-SET. 
 

> Covering problems: SET-COVER, VERTEX-COVER. 
 

> Sequencing problems: HAMILTONIAN-CYCLE, TSP. 
 

> Partitioning problems: 3-COLOR, CLIQUE. 
 

> Constraint satisfaction problems: SAT, 3-SAT. 
 

> Numerical problems: SUBSET-SUM, PARTITION, KNAPSACK. 
 



 

Cook’s Theorem: States that satisfiability is in P if and only if P=NP If P=NP  then 
satisfiability is in P 

 

If satisfiability is in P, then P=NP       

To do this 

> A-) Any polynomial time nondeterministic decision algorithm. 

I-)Input of that algorithm 

Then formula Q(A, I), Such that Q is satisfiable iff ‘A’ has a successful  

termination with Input I. 

> If the length of ‘I’ is ‘n’ and the time complexity of A is p(n) for some polynomial 

p() then length of Q is O(p3(n) log n)=O(p4(n)) 

The time needed to construct Q is also O(p3(n) log n). 

> A deterministic algorithm ‘Z’ to determine the outcome of ‘A’ on any input ‘I’ Algorithm 

Z computes ‘Q’ and then uses a deterministic algorithm for the satisfiability 

problem to determine whether ‘Q’ is satisfiable.If O(q(m)) is the time needed to determine whether a 

formula of length ‘m’ is satisfiable then the complexity of ‘Z’ is O(p3(n) log n + q(p3(n)log n)). 

> If satisfiability is ‘p’, then ‘q(m)’ is a polynomial function of ‘m’ and the complexity of ‘Z’ 

becomes ‘O(r(n))’ for some polynomial ‘r()’. 

> Hence, if satisfiability is in p, then for every nondeterministic algorithm A in NP, we can obtain 

a deterministic Z in p. 

By this we shows that satisfiability is in p then P=NP 
 



  

Trie is an efficient information retrieval data structure. Using Trie, search complexities can be brought to 

optimal limit (key length). If we store keys in a binary search tree, a well balanced BST will need time 

proportional to M * log N, where M is the maximum string length and N is the number of keys in the tree. 

Using Trie, we can search the key in O(M) time. However, the penalty is on Trie storage requirements (Please 

refer to Applications of Trie for more details) 

  

 

Every node of Trie consists of multiple branches. Each branch represents a possible character of keys. We need 

to mark the last node of every key as the end of the word node. A Trie node field isEndOfWord is used to 

distinguish the node as the end of the word node. A simple structure to represent nodes of the English alphabet 

can be as follows,  

// Trie node  

struct TrieNode  

{  

     struct TrieNode *children[ALPHABET_SIZE]; 

     // isEndOfWord is true if the node  

     // represents end of a word  

     bool isEndOfWord;  

};  

Inserting a key into Trie is a simple approach. Every character of the input key is inserted as an individual Trie 

node. Note that the children is an array of pointers (or references) to next level trie nodes. The key character 

acts as an index to the array children. If the input key is new or an extension of the existing key, we need to 

construct non-existing nodes of the key, and mark the end of the word for the last node. If the input key is a 

prefix of the existing key in Trie, we simply mark the last node of the key as the end of a word. The key length 

determines Trie depth.  

Searching for a key is similar to an insert operation, however, we only compare the characters and move 

down. The search can terminate due to the end of a string or lack of key in the trie. In the former case, if 

the isEndofWord field of the last node is true, then the key exists in the trie. In the second case, the search 

terminates without examining all the characters of the key, since the key is not present in the trie.  

The following picture explains the construction of trie using keys given in the example below,  

  

                       root 

                    /   \    \ 

                    t   a     b 

                    |   |     | 

                    h   n     y 

                    |   |  \  | 

                    e   s  y  e 

                 /  |   | 

                 i  r   w 

                 |  |   | 

                 r  e   e 

                        | 

http://en.wikipedia.org/wiki/Trie
https://www.geeksforgeeks.org/advantages-trie-data-structure/
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